Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конверсия углеводородных газов при термическом разложении

    Получение ацетилена методом термического разложения углеводородов изучалось в СССР и за рубежом. Этот метод основан на мгновенном действии высокой температуры (порядка 1500°) на углеводородную смесь с увеличением числа углеродных атомов в молекуле углеводорода степень нагрева может быть снижена. Существует несколько технологических схем термического разложения углеводородов, различающихся способами подвода тепла и сырья. Наиболее эффективным из них, по-видимому, является термический крекинг с присадкой кислорода, или, как его называют, термоокислительный пиролиз. При разложении углеводородов этим методом наряду с ацетиленом можно получать метанол, водород или азотоводородную смесь для синтеза аммиака. Эти продукты извлекаются из газов, отходящих из установок синтеза ацетилена. Одновременное получение столь ценных продуктов весьма положительно сказывается на экономике процесса. Особенно большой интерес представляет извлечение из отходящих газов аммиака. Из синтез-газа, образующегося при получении 1 т ацетилена, можно выделить около 4,2 т аммиака или 3,4 т метанола, а при ежегодной выработке 60—65 тыс. т ацетилена — 250 тыс. т аммиака. В производстве аммиака методом конверсии для выработки такого количества продукта надо израсходовать свыше 300 млн. м углеводородных газов. [c.18]


    Водород и его смеси с азотом и окисью углерода могут быть также получены путем газификации на водяной газ жидких углеводородов. Механизм образования водяного газа из жидких углеводородов можно себе представить, условно расчленяя данный процесс на две стадии, когда на первой стадии — при нагреве жидкого сырья — происходит его термическое разложение с образованием углеводородного газа и углерода, а на второй — под действием окислителей — имеет место конверсия углеводородного газа и газификация углерода с получением смеси СО На. [c.198]

    НОВЫЕ СПОСОБЫ КОНВЕРСИИ УГЛЕВОДОРОДНЫХ ГАЗОВ Термическое разложение углеводородов [c.122]

    Во-вторых, водород можно получать специальными методами каталитической конверсией углеводородных газов с водяным паром, термическим разложением углеводородных газов, газификацией тяжелого углеводородного сырья. [c.283]

    В главе 1 указывалось, что имеется существенная разница между полимеризацией и термической конверсией углеводородных газов. Процессы полимеризации олефинов в высокомолекулярные олефины и нафтены, сопровождаясь некоторыми побочными реакциями, протекают при мягких температурных условиях и в присутствии различ-ных катализаторов. Процесс преимущественно синтетический, без заметного разложения. В главе 1 были описаны различные процессы полимеризации. В этом разделе рассматривается только термическая конверсия углеводородных газов. [c.181]

    Необходимо отметить, что применяемый в процессе конверсии углеводородных газов активный никелевый катализатор значительно ускоряет реакции термического разложения углеводородов. При применении этого катализатора реакции (VH-14) и (VII-15) протекают с заметной скоростью уже при сравнительно низких температурах (около 400° С). Вместе с тем установлено, что при конверсии метана и его гомологов с двойным и более количеством водяного пара (но сравнению с теоретически необходимым) углерод на активном никелевом катализаторе не выделяется. Можно полагать, что одним из факторов, препятствующим выделению углерода нри конверсии высших алифатических углеводородов на активном катализаторе является гидрирование этих соединений до метана но реакции (VH-9). [c.146]

    Для успешного проведения процесса конверсии углеводородных газов с водяным паром в трубчатых печах, большое значение имеет правильная организация технологического режима и создание условий для длительной работы катализатора. Как уже указывалось, во избежание отложений углерода расход пара на процесс должен составлять не менее 200% от теоретически необходимого. Исходная парогазовая смесь должна быстро нагреваться до температуры реакции, ибо в противном случае возможно термическое разложение углеводородов с выделением элементарного углерода. Температуру в верхней части реакционных труб, где поглощается наибольшее количество тенла, следует поддерживать в пределах 600—650° С. Температура в нижней части труб определяется требуемой степенью конверсии углеводородов. Вместе с тем необходимо отметить, что при перегреве катализатор имеет свойство рассыпаться. [c.172]


    Между тем, в сыром техническом водороде, производимом методами газификации твердых и жидких топлив, а также конверсией углеводородных газов, содержится, как правило, некоторое остаточное количество окиси углерода. 1) Окись углерода имеется и в водороде, получаемом термическим разложением углеводородов, а также железо-паровым способом. Поэтому процесс удаления СО из газа является обычно составной частью технологической схемы получения водорода вышеуказанными способами. [c.379]

    Имеется несколько патентов о крекинге жидкьх нефтяных продуктов, смешанных с углеводородными газами. В этих патентах указывается, что углеводородные газы, богатые водородом, могут реагировать в условиях крекинга с жидким нефтяным сырьем или продуктами разложения, обедненными водородом, и могут дать более высокие выходы бензинов и уменьшение образования кокса. Температурные условия процессов в данном случае не отличаются существенно от условий обыкновенного термического крекинга. Рекомендуемые давления те же самые или немного выше, чем при крекинге. На самом деле взаимодействие между такими газами, как метан, этан, пропан, и высокомолекулярными олефинами или циклическими углеводородами маловероятно при условиях обыкновенного крекинга с точки зрения термодинамики. Значительно более высокие температуры или более высокие давления следует применять, чтобы обеспечить их взаимодействие. Термическая конверсия низкомолекулярных парафинов также маловероятна в условиях обыкновенного крекинга. Таким образом, вряд ли эти патенты имеют практическое значение. [c.165]

    Применительно к условиям нефтеперерабатывающих заводов наиболее рациональными методами производства водорода следует считать конверсию углеводородных газов с водяным паром и термическое разложение углеводородных газов, получивших преимущественное применение на зарубежных НПЗ, в частности, в США. [c.105]

    В СССР и за рубежом для производства водорода в нефтеперерабатывающей промышленности используют главным образом процесс конверсии с паром, характеризующийся наиболее низкой себестоимостью получаемого водорода [51—54]. Процесс конверсии с кислородом используют в основном в химической промышленности [55, 56]. В последнее время большое внимание начали уделять методам термического разложения углеводородных газов, позволяющим получать водород в одну ступень. При этом себестоимость водорода может быть на 25—30% ниже, чем в процессе конверсии с паром. [c.113]

    Для определения содержания органических сернистых соединений в газах широко применяется также метод окисления и последующего объемного определения образующихся окислов серы 54. При анализе углеводородных газов метод конверсии вообще неприменим вследствие термического разложения углеводородов при высокой температуре. В этом случае пригоден только метод окисления газа, — Прим. перев. [c.781]

    Для металлургической промышленности могут представить интерес различные варианты изготовления восстановительных газов как для бескоксового приготовления металлов в восстановительной атмосфере, так и для сокращения расхода кокса в доменном производстве. Введение в восстановительную зону доменной печи смесей оксида углерода и водорода или чистого водорода позволяет уменьшать расход кокса на величину, в 5—6 раз превышающую израсходованную массу восстановительного газа. Последний может быть получен либо при паровой или парокислородной конверсии коксового газа, либо при термическом разложении углеводородных компонентов коксового газа. Украинским углехимическим институтом было предложено совместить термическое разложение их с сухим тушением кокса из-за эндотермического характера распада метана СН = С + 2Н2 — О. В этом случае камера сухого тушения кокса разделяется на несколько зон. В первой иэ них при подаче небольшого количества воздуха частично сгорает вещество кокса, а основная масса кокса нагревается до 1200< С и более. Затем при взаимодействии с веществом кокса происходит термическое разложение метана и образование газа, насыщенного водородом. Кокс окончательно охлаждается инертным газом. [c.299]

    Водород можно получить из углеводородных газов различными путями конверсией с водяным паром конверсией с углекислотой неполным окислением термическим разложением. [c.195]

    Являясь менее стойкими, чем метан, эти углеводородные газы могут конвертироваться в более мягких условиях. Конверсия их связана, однако с дополнительными трудностями, так как меньшая стойкость углеводородных газов к термическому разложению приводит к опасности отложений углерода на катализаторе. Это, с одной стороны, изменяет в нежелательную сторону условия равновесия, а с другой, — приводит к порче катализатора и расстройству процесса. [c.197]


    В последнее время разрабатываются методы термического разложения углеводородных газов с получением водорода в одну ступень, что должно снизить себестоимость водорода на 30% по сравнению с его себестоимостью при получении в процессе конверсии метана (природного газа) с паром. [c.211]

    В качестве примеров цля проведения термодинамических расчетов выбраны реакции термического разложения, термоокислительного пиролиза и конверсии нормальных углеводородов 1... 5 парами воды и диоксидом углерода с образованием в результате реакции алкенов, диенов, сит1тез-газа. Представлены процессы получения углеводородного сырья для нефтехимического синтеза, производства углеводородных мономеров для синтетте-ских материалов, синтеза различных кислородсодержащих соединений, подробно изложенных в учебнике Технология нефтехимического синтеза (Адельсон С.В., Вишнякова Т.П., Паушк1ш Я.М. -М. Химия, 198,5. -608 с.). [c.4]


Смотреть страницы где упоминается термин Конверсия углеводородных газов при термическом разложении: [c.106]   
Производство технологического газа для синтеза аммиака и метанола из углеводородных газов (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газы термическое разложение

Конверсия газов

Разложение е газе

Углеводородные газы конверсия

Углеводородный тип газов



© 2025 chem21.info Реклама на сайте