Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

газов окислительно-восстановительный

    Методы очистки газов от оксидов азота можно разделить на окислительные, восстановительные и сорбционные. [c.63]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Газовый взрыв является результатом стремительного выделения энергии в окислительно-восстановительной реакции. При этом газ нагревается и в условиях ограниченного пространства происходит увеличение давления (в некоторых случаях восьмикратное). Так, при взрыве газовоздушной смеси, начальное давление которой равно 0,1 МПа, максимальный уровень давления при взрыве составит 0,8 МПа по абсолютной величине или 0,7 МПа по шкале датчика давления (т. е. избыточное давление составит 7 атм). В том случае, если начальное давление и отличается от атмосферного, то максимальное давление, измеренное в абсолютных величинах, будет по-прежнему примерно в 8 раз [c.274]

    Электрохимические преобразователи информации различаются по своему функциональному назначению и по механизму работы, т. е. по принципам, которые положены в основу их действия. По последнему признаку выделяют три основных типа электрохимических преобразователей 1) преобразователи, основанные на закономерностях диффузионных процессов в обратимых окислительно-восстановительных системах (иногда эти преобразователи называют концентрационными или жидкофазными) 2) преобразователи, использующие закономерности обратимых и необратимых фазовых переходов на электродах (электроосаждение и растворение металлов, выделение газов, образование и восстановление окислов, осаждение нерастворимых солей, явления пассивации и растворения металлов и др.) 3) преобразователи, основанные на электрокинетических явлениях (электроосмос, потенциалы течения и др.). [c.216]

    Классификация каталитических реакций. Катализ делят на гомогенный и гетерогенный. Гомогенный катализ можно разделить на кислотно-основной (его вызывают кислоты и основания), окислительно-восстановительный (его вызывают соединения металлов переменной валентности), координационный (катализаторы — комплексные соединения), гомогенный газофазный (катализаторы — химически активные газы, такие, как N62, ВГз и т. д.) и ферментативный. Деление это не строго, так как одна и та же реакция, например гидролиз сложного эфира, может в зависимости от катализатора— кислоты, комплекса или фермента — попасть в ту или иную группу, [c.169]

    Изменяя условия электролиза и тем самым влияя на перенапряжение газов, окислительно-восстановительный потенциал и поляризацию, можно в значительной степени влиять не только [c.357]

    Выплавка стали в электрических печах основана на использовании для нагрева, расплавления и поддержания металла в расплавленном состоянии электрической энергии, трансформируемой в теплоту. В отличие от кислородно-конвертерного метода при электроплавке выделение тепла не связано с использованием окислителей. Поэтому, плавку в электрических печах можно вести в любой атмосфере — окислительной, восстановительной, нейтральной (инертный газ) и в широком диапазоне давлений — в вакууме, при атмосферном или повышенном давлениях. [c.86]


    Формулы ЭТИ очень непохожи, но одна общая черта у них есть - наличие атомов азота, большинство из которых имеют положительную степень окисления, и атомов углерода, имеющих отрицательную степень окисления. Это создает условия для очень быстрого переноса электронов от атома углерода к атомам азота с выделением большого количества энергии. (Реакция взрыва - быстрая экзотермическая окислительно-восстановительная реакция, протекающая с выделением большого количества газов.) Реакция взрыва [c.524]

    Любая электродная реакция связана с изменением окислительно-восстановительного состояния участвующих в ней веществ, и поэтому все электроды являются окислительно-восстановительными. Однако обычно окислительно-восстановительными электродами называют такие, у которых в электродной реакции металлы или газы непосредственно не участвуют, а металл этих электродов (чаще всего платина), обмениваясь электронами с участниками окислительно-восстановительной реакции, принимает потенциал, отвечающий установившемуся окислительно-восстановительному равновесию  [c.174]

    Параметры окисления кокса на одной из установок риформинга следующие [178]. Окислительно-восстановительную регенерацию алюмоплатинового катализатора проводили в течение 6 сут при давлении в системе 0,5 МПа. Циркуляция инертного газа составляла 40-50 тыс. м /ч содержание кислорода в инертном газе изменяли в пределах [c.99]

    В настояшее время известно, что в отсутствие дополнительного отжига полное сгорание углерода и графита до двуокиси углерода не происходит и в отходящем газе, который содержит определенное количество окиси углерода, соотношение СО СО увеличивается при возрастании температуры /1/. С подобным явлением часто сталкиваются и при выжигании кокса с катализаторов, в ходе которого от 30 до 50% углерода может удаляться в виде СО, что приводит к значительному ослаблению теплового эффекта реакции. Высокое содержание окиси углерода в отходящем газе обычно наблюдается при регенерации катализаторов, не обладающих активностью в окислительно-восстановительных реакциях. В то же время в процессе выжига кокса с поверхности таких катализаторов, как Сг Оз на окиси алюминия, на алюмосиликате, [c.23]

    Как и в случае гранулированных катализаторов, скорость выжигания кокса и отношение СО СО2 в отходящем газе зависят от наличия окислительно-восстановительных компонентов катализаторов. [c.26]

    Процесс ионизации не изменяет химических свойств ионов по сравнению с соответствующими атомами. Поэтому возможно создание плазмы с окислительными, восстановительными или нейтральными свойствами и тем самым применение плазмы для различных видов технологических процессов. При этом следует учитывать, что ноток высокотемпературного ионизированного газа — плазмы обладает в 10—100 раз более высокой греющей способностью, чем поток газа в топливных печах, и поэтому применение плазмы является мощным средством ускорения технологических процессов. [c.240]

    Анодное окисление (электролитическое рафинирование) меди. В установке для электролиза замените графитовый анод на медный (медная пластинка или кусок толстой медной проволоки). В качестве катода используйте графитовый электрод. В электролизер налейте 1 М раствор серной кислоты и опустите в него оба электрода. Присоедините последние к аккумулятору и через некоторое время наблюдайте около анода появление синей окраски, которая в процессе электролиза распространяется на весь объем раствора. Одновременно графитовый электрод покрывается красным слоем металлической меди. Какой газ выделяется в начале опыта на катоде и почему затем его выделение прекращается Составьте уравнения катодного и анодного окислительно-восстановительного процессов. [c.101]

    Для гетерогенного катализа газов применяют труднолетучие основания или кислоты, например, Н3РО4 или соли, которые наносят на пористые зерна носителей. Типичными являются также кислотные или амфотерные окислы (5Юг, 2г02,А120з и др.). Для некоторых сложных процессов (риформинг, полимеризация и др.) необходимы катализаторы, обладающие полифункциональными свойствами и способные вести катализ как по окислительно-восстановительному, так и по кислотно-основному механизмам [1, 3]. [c.27]

    Сероводород более агрессивен, чем углекислый газ по отношению к портландцементному камню, благодаря способности участвовать в окислительно-восстановительных реакциях. [c.50]

    Предложен, реализован в опытно-промышленном масштабе и с помощью численного эксперимента оптимизирован способ предотвращения образования фенола и протекания окислительно-восстановительных реакций в процессе каталитического крекинга путем подачи восстанавливающего агента — углеводородного газа [14]. [c.208]

    Ионно-электронный метод применяется для составления уравнения ионных окислительно-восстановительных процессов. Этот метод основан на составлении частных уравнений реакции восстановления иона (молекулы)-окислителя и окисления иона (молекулы)-восстановителя с последующим суммированием их в общее уравнение. Для этого необходимо составить ионную схему реакции, руководствуясь общими правилами составления ионных уравнений, т. е. записать сильные электролиты в виде ионов, а неэлектролиты, слабые электролиты, газы и осадки — в недиссоциированном виде. Не изменяющиеся в результате реакции ионы в ионную схему не включаются. Для реакции [c.188]


    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]

    К 0,5—1 мл раствора перманганата калия прибавьте микрошпатель пероксида натрия. Наблюдайте выделение газа и образование бурого осадка. Одинакова ли окислительно-восстановительная роль пероксида натрия в проделанных вами реакциях  [c.265]

    Среди окислительно-восстановительных электродов выделяют г а-зовые электроды. Газовый электрод состоит из инертного металла (часто платины или платинированной платины), к которому подводится электрохимически активный газ. Молекулы газа адсорбируются на поверхности металла, распадаясь при этом на атомы, а адсорбированные атомы участвуют уже непосредственно в электродном процессе. Поскольку между молекулами газовой фазы и адсорбированными атомами устанавливается равновесие, то при записи электродного равновесия промежуточное адсорбционное состояние часто опускают. Примером газового электрода, обратимого по катиону, является водородный электрод, на поверхности которого устанавливается равновесие  [c.121]

    Любая электродная реакция в принципе представляет собой окислительно-восстановительную реакцию. Однако к окислительно-восстановительным (редокси-) электродам относят только те электроды, в реакциях которых не принимают непосредственного участия металлы и газы. Такие электроды состоят из металлического проводника, контактирующего с раствором, содержащим окислители и восстановители. К металлу в редокси-электродах предъявляются те же требования, что и к металлическому проводнику в газовых электродах. В качестве примера окислительно-восстановительного электрода можно привести систему Fe ++ е" Fe +. [c.194]

    В концентрационных цепях оба электрода идентичны как по физическому состоянию, так и по химической природе участников окислительно-восстановительных процессов они отличаются только концентрацией компонентов Ох или Red. Источником электрической энергии является разность свободных энергий Гиббса, обусловленная различными активностями одних и тех же химических компонентов. Концентрационные цепи можно приготовить из амальгам разных концентраций в одном и том же растворе из одинаковых электродов 1, 2 или 3-го рода, находящихся в растворах разной концентрации из одинаковых газовых электродов, работающих при разных давлениях газов. [c.123]

    При окислительно-восстановительном титровании часто необходимо принимать меры, препятствующие окислению восстановителя кислородом воздуха. В таких случаях титрование проводят в атмосфере инертного газа, тщательно очищенного от кислорода. Кроме того, следует учитывать, что процессы окисления и восстановления нередко идут с участием Н+ или 0Н . Если это имеет место в анализируемой сис- [c.127]

    Потенциал, возникающий в полуэлементе в результате окислительно-восстановительной реакции, называют окислительно-восстановительным потенциалом. К окислительно-восстановительным (r d—ох) электродам принято относить только те электроды, в работе которых металлы и газы не принимают непосредственного участия. [c.157]

    Окислительно-восстановительные электроды. Все электроды, которым соответствует потенциалопределяющие реакции с участием электронов, представляют собой окислительно-восстановительные системы. Однако принято в особую группу выделять электроды, в потенциалопределяющих реакциях которых не участвуют простые вещества — газы, металлы. Эти электроды называются окислительновосстановительными редокси-электроды). Они, как правило, состоят из инертного вещества с электронной проводимостью (например, платина), погруженного в раствор, содержащий вещества с различной степенью окисления Red и Ох. В общем виде схема электрода -и уравнение потенциалопределяющей реакции записываются так  [c.483]

    К первой группе относятся потенциометрический метод (изменение окислительно-восстановительного потенциала раствора электролита, омывающего один из электродов ячейки, обусловленное реакцией с участием определяемого компонента газовой смеси и зависящее от его концентрации мерой концентрации является изменение э. д. с. ячейки), амперо метрический метод (в деполяризационном его варианте используется зависимость силы диффузионного тока, возникающего в поляризованной ячейке под деполяризующим действием определяемого компонента, от концентрации этого компонента газовой смеси) и кулонометрический метод (тот же амперометрический метод, но осуществляемый в услопиях количественного проведения электрохимической реакции перевода определяемого вещества газовой смеси в другую форму или другое соединение мерой концентрации является количество израсходованного на реакцию электричества или, при непрерывном стабилизированном подводе контролируемой газовой смеси, ток во внешней цепи ячейки). Кулонометрические ЭХ-газоанализаторы обычно выпускаются как автоматические титрометры непрерывного действия с так называемой электрохимической компенсацией. Мерой концентрации определяемого компонента газовой смеси служит в этих приборах ток электролиза, выделяющий из раствора электролита (в котором растворяется определяемый газ) титрант в сте-хиометрических количествах, что обеспечивается электрометрическим измерением точки эквивалентности и автоматическим управлением током электролиза. [c.612]

    Катализаторы для таких окислительно-восстановительных реакций, как реакция (1), кроме высокой активности должны обладать селективными свойствами, характеризующимися умеренной гидрирующей функцией. Это необходимо, чтобы достичь соответствующих скоростей реакции без заметного образования метана. Следовательно, соответствующие катализаторы можно искать среди металлов группы 1Б, окислов 8 группы и сульфидов 8 группы (см. табл. 2). Следующее требование, заключающееся в том, что катализатор должен быть стабильным в среде реакционного газа, ограничивает выбор металлической медью, РбзО и РеЗ. Кроме того, подходящими свойствами, но в ограниченной степени, обладает сульфидированная форма молиб-дата кобальта. [c.118]

    Высокомолекулярное нефтяное сырье, вовлекаемое в глубокую переработку во все большей степени, характеризуется, как правило, высоким содержанием серы, что обуславливает повышенное внимание к исследованиям превращений серы в различных процессах. При термокаталитической переработке (ТШ) высокомолекулярного нефтяного сырья (ВМНС) на природном железоокисном катализаторе в присутствии водяного пара превращение сернистых соединений имеет ряд особенностей, обусловленных протеканием окислительно-восстановительных реакций на катализаторе и неинертностью его по отношеншо к сере. В настоящей работе приведены результаты исследований особенностей превращения сернистых соединений, в частности, зависимости содержания сернистых соединений в газах ТШ при переработке различных видов сырья от условий процесса, катализатора и времени работы. [c.125]

    Опыт 13. Получение оксида С03О4 (ТЯГА ). Кристаллы Со(ЫОз)2-6Н20, полученные в опыте 4, прокалите при 600° С в фарфоровом тигле до прекращения выделения газов. Образовавшийся продукт используйте в следующем опыте. К какому типу окислительно-восстановительных реакций относится процесс получения С0С02О4  [c.157]

    В заключение следует сказать, что в окислительно-восстановительном титровании титруемые вещества цолжны нахоциться в определенной степени окисления. Поэтому титрованию часто предшествует операция окисления или восстановления определяемого иона. Для этого применяют многие реагенты, удовлетворяющие ряду требований быстрота окисления (или восстановления), ко-пичественность протекания реакции, легкость удаления из раствора избытка окисляющего (или восстанавливающего) реагента, селективность действия. Вещества, применяемые для предварительного окисления или восстановления, классифицируют обычно по их физическому состоянию применяют газы, тверцые вещества, растворы. [c.143]

    Для того чтобы записать уравнение окислительно-восстановительной реакции, прежде всего надо знать исходные вещества и конечные продукты реакции. В отдельных случаях однозначный ответ можно получить из расчета, основанного на данных об окислительно-восстановительных потенциалах соответствующих редокс-пар (разд. 33.5.1.5). Однако часто приходится устанавливать полученные в реакции. вещества с помощью химического анализа. Особое внимание следует обращать на возможность выделения в ходе реакции газов. Например, при реакции пиролюзита МпОг с соляной кислотой цвет и запах выделяющегося газа указывает на образование хлора, а цвет и другие свойства раствора — на образование Мп +. Зная компоненты системы, можно установить состав сопряженных окислительно-восстановительных пар, взаимодействующих в данной реакции. В нащем примере такими парами являются МПО2/МП2+ и С1 /С12- Сначала запишем по 1уреакции для обеих сопряженных пар. Начнем с определения степени окисления, которую атомы элементов имеют в окисленном и восстановленном состоянии. Далее найдем число электронов, которые участвуют в каждой полуреакции  [c.410]

    Образо11ание тонких слоев этих соединений на поверхности металла вызывает яоявленне цветов побежалости, увеличение толщины слоя продуктов реакции лриводит к окалине. Стадии этого довольно сложного процесса включают адсорбцию газа на поверхности, реакции на поверхности раздела, фаз, образование зародышей кристаллов, образование поверхностного слоя и про-дессы диффузии подвижных частиц сквозь этот слой в обоих направлениях. Это движение обусловлено уменьшением концентрации реагирующих частиц на поверхности и возникшим вследствие этого градиентом концентрации диффундирующих по ионным вакансиям катионов металла (например, Си+) и одновременным движением дефектов электронов (дырок) (например, Си +) к поверхности раздела твердых фаз. На поверхности протекает окислительно-восстановительная реакция с образованием нового твердого вещества. Для системы Си/Оа происходит, например, образование оксида меди(1)  [c.436]

    В химической промышленности платина применяется для изготовления коррозионностойких деталей аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство пероксодисерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от примесей кислорода и в ряде других процессов. Платиновые и платино-рениевые ката чизаторы, используются при получении высокооктановых бензинов и мономеров для производства синтетического каучука и других полимерных материалов. Сплавы с родием и пал.падием применяются для конверсии в безвредные вещества токсичных компонентов выхлопных газов автомобилей. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперсном состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода. [c.531]

    При очень высокой температуре сулырат кальция частично разлагается с образованием оксида кальция, кислорода и еще одного газа. Составьте уравне1ше этой реакции н укажите, можко ли ее рассматривать как окислительно-восстановительную. [c.120]

    Диоксид серы. Окислительно-восстановительные свойства диоксида серы ЗОг (сернистый газ) можно изучать, используя его в газовом состоянии (пропускать через раствор реагента) или же в виде водного раствора— сернистой Кислоты. Такие же результаты получаются при использовании подкисленных растворов сульфитов КааЗОз или Кг50з. [c.279]

    Существуют два пути ингибирования полимеризации (рис. 50, б) изоляция системы для подавления источника новых свободных радикалов (ингибирование инициирования) и разрыв цикла передачи некоторым агентом, который может конкурировать с молекулами мономера в реакции с макрорадикалами (ингибирование передачи). Ингибирование инициирования основано главным образом на принципе исключения исключение применения мономера при повышенных температурах или при облучении УФ-светом исключение контакта с перекисными соединениями, а также с воздухом и кислородсодержащим газом, способными привести к образованию гидроперекисей и перекисей — сильных источников свободных радикалов исключение некоторых соединений переходных металлов и других окислительно-восстановительных агентов, обычно катализирующих радикально-цепной распад перекисей или образующих чрезвычайно лабильные металлорганнческие перекиси типа РеООН или РеООРе. [c.172]


Смотреть страницы где упоминается термин газов окислительно-восстановительный: [c.6]    [c.170]    [c.241]    [c.21]    [c.155]    [c.196]    [c.228]    [c.240]   
Химия травляющих веществ Том 2 (1973) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте