Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины высокомолекулярные

Рис. 136. Схема гидроформилирования высокомолекулярных олефинов. Рис. 136. <a href="/info/562184">Схема гидроформилирования</a> высокомолекулярных олефинов.

    Кроме получения олефинов термическим дегидрированием этана и крекингом, вернее каталитическим дегидрированием пропана и бутана, возможен еще пиролиз высокомолекулярных углеводородов, таких как тяжелый бензин и газойли. Этот пиролиз протекает со значительным образованием кокса. Чтобы уменьшить затруднения, связанные с образованием кокса, имеются три пути  [c.35]

    При крекинге нефти, осуществляемом в целях получения бензина, образуется крекинг-бензин, содержащий олефины, которые пока еще не находят применения вследствие их неоднородности и непостоянства состава. Высокомолекулярные олефины, которые требуются нефтехимической промышленности во все возрастающих количествах, могут быть получены примерно четырьмя способами. [c.61]

    Высокомолекулярные меркаптаны, применяемые в производстве синтетического каучука, могут быть получены каталитическим присоединением сероводорода к третичным олефинам [4]. Они могут окисляться в дисульфиды и сульфокислоты, которые в свою очередь находят разнообразное применение. [c.274]

    При алкилировании бензола вновь образовавшимися (в результате полимеризации исходных олефинов) высокомолекулярными олефинами получаются высокомолекулярные алкилбензолы. Первоначально они считались нежелательными побочными продуктами, но в настоящее время на их основе производятся растворимые в масле сульфонаты и моющие присадки для смазочных масел, и потому хвостовые фракции алкилбензолов становятся ценным побочным продуктом [42]. [c.408]

    В общем все процессы, позволяющие из низкомолекулярного или иа высокомолекулярного исходного сырья получать газообразные олефины,. основаны на процессах пиролиза, т. е. на процессах, при которых газ или нефтяная фракция короткое время нагревается до высокой температуры, предпочтительно в присутствии водяного пара. [c.46]

    Присоединение серной кислоты к высокомолекулярным олефинам с образованием соответствующих сульфатов не ставит целью последующее их омыление для получения спиртов. Его целью является получение натриевых солей алкилсуль-фатов, которые, если алкильный остаток содер>] ит от 12 до 18 углеводородных атомов, обладают хорошими капиллярными свойствами и могут применяться как вспомогательные, моющие и эмульгирующие средства. Особенно большое число синтетических моющих средств на [c.213]

    Промышленный процесс пиролиза нефтяных фракций, идущего с образованием только газообразных олефинов и высокомолекулярных ароматиче- [c.60]

    Ж. ПОЛУЧЕНИЕ ВЫСОКОМОЛЕКУЛЯРНЫХ ОЛЕФИНОВ [c.61]


    В тех же условиях в продуктах пиролиза этилена содержатся высокомолекулярные олефины — продукт сополимеризации бути — ленов с этиленом. При температурах 600 °С и выше в продуктах термолиза этилена появляются бутадиен и водород в результате дегидрирования бутена—1. [c.32]

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]

    Процесс основан на том, что силикагель адсорбирует ароматические углеводороды раньше олефинов и насыщенных углеводородов. Поэтому, если пропускать углеводородную смесь, содержащую ароматические, через камеру, заполненную гелем кремнекислоты, то они будут задерживаться силикагелем, а насыщенные углеводороды и моноолефины пройдут через камеру. Когда силикагель полностью насытится ароматическими (практически применяют избыток силикагеля до /з от всей загрузки), приступают к десорбции. Для этого берут смесь высокомолекулярных ароматических углеводородов, которые вытесняют ранее адсорбированные ароматические углеводороды с силикагеля и выводят ее из адсорбера. Низкокипящие углеводороды можно затем легко выделить из смеси перегонкой. [c.109]

    Этот процесс применен в Германии для получения высокомолекулярных спиртов. Для синтеза используют узкую фракцию, кипящую в интервале 15—20°. Крекинг-олефины (см. стр. 68) всегда смешаны с довольно значительным количеством кипящих в тех же пределах парафиновых углеводородов. [c.218]

    Реакции синтеза высокомолекулярных углеводородов С — ал— килированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа — кислотному. Реакции С — алкилирования протекают с выделением 85 — 90 кДж/моль (20 — 22 ккалУмоль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие темшфатуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изо — [c.137]

    Значительно труднее осуществляется такой процесс при хлорировании высокомолекулярных углеводородов, например додекана или гексадекана. При таком размере молекулы температуры кипения исходного углеводорода и продукта его хлорирования различаются незначительно, вследствие че го для фракционирования требуются ректификационные колонны с высокой четкостью погоноразделения. Ректификацию следует проводить под возможно низким давлением, так как всегда существует опасность, что в результате отщепления хлористого водорода хлорированный продукт превратится в олефин. [c.197]

    Во-вторых, получением высокомолекулярных относительно однородных олефинов термическим крекингом парафина. Парафин из нефти, полученный синтезом Фишера-Тропша или из бурого угля, разлагается при высоком нагреве (пример 550°) в присутствии перегретого водяного пара. Образующиеся при этом олефины смешаны с парафинами, так как нри крекинге парафиновых углеводородов образуются олефины и парафины, причем сумма атомов С олефина и парафина равна числу атомов С исходного парафина. [c.61]

    Вторичные хлориды, образующиеся при хлорировании высокомолекулярных углеводородов, столь же мало пригодны и для применения в реакции Гриньяра они обладают весьма малой реакционной способностью. При применении же более жестких условий реакций они обнаруживают склонность к синтезу Вюрца и образованию олефинов. [c.234]

    Сырье (крекинг-сырье). Высокомолекулярные соединения расщепляются легче низкомолекулярных, причем парафины нормального строения отличаются наибольшей склонностью к расщеплению далее следуют изопарафины, олефины, нафтены и ароматические углеводороды. [c.16]

    В нредыдуш их разделах были рассмотрены способы получения олефинов дегидрированием парафиновых углеводородов без уменьшения числа углеродных атомов в молекуле. Этаи дегидрируется в этилен простым нагреванием до высокой температуры, более высокомолекулярные углеводороды, как пропан, бутан, пентан, дегидрируются каталитическим способом. Высокомолекулярные парафиновые углеводороды — гексан, гептан и т. д. — не могут быть превращены экономически приемлемым способом в олефины с раттм числом атомов С, так как в этом случае преобладают процессы крекинга. [c.49]


    Реакции хлорирования относятся к числу важнейших проц ессов нефтехимической нромышленности. Парафины и особенно олефины легко реагируют с хлором, давая в результате продукты, являюш иеся важнейшими промежуточными и конечными продуктами современной промышленности алифатической химии. Значение продуктов хлорирования метана, этана, этилена, нропена, пентана, а также высокомолекулярных парафиновых углеводородов, получаемых из парафинистых нефтяных фракций или синтезом Фишера-Тропша, в настояш ее время очень велико. [c.112]

    Модифицировав оксосинтез [20—23], можно получать из низко-мо.текулярных олефинов высокомолекулярные спирты. В данном случае образующиеся прп оксосинтезе промежуточные альдегиды превращаются в высшие спирты путем ди-, тримеризации и т. д. Для этого метода применяется обычный для оксосинтеза катализатор кобальта. В случае димеризации добавляют небольшое количество цинксодержащего соединения. [c.172]

    Реакция присоединения серпой кислоты к высокомолекулярным олефинам проводится в так называемых сульфаторах при низкой температуре и в условиях непродолжительного контакта (рис. 133). Концентрация серной кислоты должна составлять минимум 98%. Применяется 15%-ный молярный избыток кислоты. [c.213]

    При каталитическом крекинге, по С. Н. Обрядчикову, сперва происходит адсорбция веществ с наибольшей физико-химической силой притяжения (смолы, олефины, высокомолекулярные полициклы и т. д.), которые полностью закрывают поверхность катализатора. В начале процесса могут быть стадии десорбции и вытеснения легких молекул более тяжелыми, особенно содержащими непредельные связи. Парафины не адсорбируются. Далее, в результате крекинга и перераспределения водорода, часть углеводородных молекул, становясь все более и более непредельными, уже не могут вытесняться другими молекулами, поэтому десорбция прекращается. В результате дальнейшей отдачи водорода адсорбированные молекулы образуют на катализаторе кокс. [c.320]

    Продукты крекинга нефти пе имеют значения как источник получения высокомолекулярных олефинов. Эти олефины очень неодинаковы ио своей природе н одна J[и могут быть нсиользоватнл практически. [c.45]

    В предыдущих разделах были рассмотрены газообразные и жидкие углеводороды, образующиеся нри крекинг-нроцессе, и их состав. Теперь необходимо рассмотреть получение низко- и высокомолекулярных олефинов. в процессах, где эти олефины являются не сопутствующим, а целевым конечным продуктом. Крекинг-газы должны подвергаться химической переработке непосредственно на нефтеперегонном заводе или в крайнем случае на близ расположенных химических заводах, так как их транспортировка обходится довольно дорого. С другой стороны, нефтехимическая промышленность, стремится получать олефиновое сырье, и в первую очередь этилен, от пред-нриятий нефтяной промышленности. Способы, которые применяются для получения олефинов, в технологическом отношении отличны от обычного, крекинг-процесса, так как здесь уже не бензин, а газ является целевым продуктом. [c.46]

    Четвертый важнейший способ нолучепня высокомолекулярных олефинов состоит в каталитической дп-, трп- и тетрамеризации газообразных нри нормальных условиях олефинов, как нронен и изобутен. Образующиеся прн этом олефины представляют собой важнейший исходный материал для алкилирования ароматических углеводородов, служаш их для получения про-мел<уточных продуктов. [c.62]

    Перевод молекулы высокомолекулярного алифатического углеводорода в раствор можно осуществить введением в ее состав различных гидрофильных групп. Чаще всего это достигают следующими путями вводят карбоксильную группу и нейтрализуют ее едкой щелочью (мыла) или нитруют углеводород далее нитросоединение восстанавливают в амин и получают солянокислый амин вводят гидроксильную группу и при взаимодействии ее с хлорсульфоновой кислотой получают алкилсульфаты или при взаимодействии с окисью этилена — растворимый в воде эфир алкилнолигликоля наконец, введение гидрофильной группы осуществляют действием серной кислоты на высокомолекулярные олефины или сульфохлорированием и омылением сульфохлоридной группы в сульфонатную  [c.408]

    Для синтеза высокомолекулярных олефинов из птилона необходимо разделить реакции роста и вытеснения. Тогда на первой ступени можно действовать этиленом нод давлением на триэтилалюмипий, причем образуется высокомолекулярный алкилат алюминия, а затеи также под давлением этилена проводить реакцию вытеснения в присутствии никеля. [c.68]

    Крекинг-олефипы, называемые также вторичными олефинами, получаются при парофазном крекинге парафина в присутствии водяного пара. Превращение парафина происходит лишь на 25—30% и неразложившийся парафин возвращается на повторный крекинг. В табл. 35 показаны результаты крекинга парафина в паровой фазе [44] в условиях, когда парафин путем повторного крекинга непревращенной части, был переработан полностью. Высокомолекулярная часть крекинг-олефинов применяется в первую очередь для производства моющих средств, получаемых присоединением серной кислоты по двойной связи (типоль). [c.68]

    Так, например, из этилена (2% объемн.), окиси углерода (90% объемн.) и водяного пара (8% объемп.) в присутствии фосфорной кислоты па актини-рованном угле при 325° и 700 а г получают пропионовую кислоту [49]. Из высокомолекулярных олефинов получают карбоновые кислоты с разветвленным алкильным радикалом. [c.219]

    Необходимо рассмотреть и мюльхеймский способ синтеза спиртов. Юн также исходит из олефинов и, как и при реакции гидроформилирования, этим способом получаются первичные спирты. Но в то время как при гидро-4>ормилировании и последующем гидрировании образуются- спирты не только с прямой цепью, но вследствие изомеризации двойных связей также я разветвленные первичные спирты, по мюльхеймскому способу получаются спирты только с прямой цепью. Спирты получают, исходя из высокомолекулярных олефинов с прямой цепью и двойной связью на конце молекулы. [c.221]

    Представляют интерес флуоресцирующие вещества для смазочных масел. Природные смазочные масла из нефти почти все обнаруживают способность к флуоресценции, а именно они имеют красный цвет в проходящем свете и зслсновато-синий в отраженном. Характер флуоресценции находится в определенной связи с качеством смазочного масла. Сейчас известно, что многие полициклическис ароматические углеводороды, алкилированные высокомолекулярными олефинами в присутствии относительно большого количества безводного хлористого алюлгания, дают алкилат, добавление которого в количество 0,1 —0,2% вес. к нефлуоресцирующим маслам сообщает им зеленовато-синюю флуоресценцию в проходящем свете. [c.227]

    Исходя из рассмотренных выше оснований, в этом случае необходимо особенно для получения высокомолекулярных спиртов применять весьма узкие углеводородные или нефтяные фракции. Уже при выделении монохлорпроизводных из частично хлорированного исходного сырья методом вакуумной перегонки происходит значительное образование олефинов, сопровождающееся выделением хлористого водорода. Это вызывает необходимость применять для изготовления ректификационных колонн специальные материалы. В противном случае образуется хлористое железо, которое весьма сильно катализирует реакцию дегидрохлорироваиия, приводящую к олефинам. [c.232]

    Для разложения высокомолекулярных алифатических сульфохлоридов с отщеплением двуокиси серы и образованием хлористых 1алкил10в оптимальная температура реакции равна 140—150°. Ниже этой температуры отщепление двуокиси серы идет слишком медленно, выше этой температуры уже в заметной мере образуются олефины. [c.386]

    Характерно, что чем выше температура пиролиза бутана, тем больше отодвигается место его распада по С —С —связи к краю молекулы. На это указывает непрерывное возрастание содержания метана в газообразных продуктах реакции вплоть до 900 °С. Аналогичные реакции распада характерны для термолиза более высо — комолекулярных алканов. Для них при умеренных температурах (400 — 500 °С) наблюдается симметричный разрыв молекулы с обра — зованием олефина и парафина приблизительно одинаковой молекулярной массы. При более высоких температурах в продуктах их термолиза обнаруживаются низшие алканы и высокомолекулярные алкены и арены, вероятно, как результат вторичных реакций. [c.32]

    Кроме изомеризации, непредельные углеводороды, включая и свежеобразованные в процессе изоолефипы, насыщаются водородом, выделяющимся при дегидрогенизации высокомолекулярных олефинов с образованием продуктов уплотнения, в том числе кокса на катализаторе. Экспериментально установлено, что при дегидрогенизации получается примерно 50% необходимого водорода. [c.46]


Смотреть страницы где упоминается термин Олефины высокомолекулярные: [c.188]    [c.218]    [c.69]    [c.62]    [c.62]    [c.215]    [c.231]    [c.281]    [c.281]    [c.387]    [c.36]    [c.441]   
Химия и технология моноолефинов (1960) -- [ c.131 , c.682 ]




ПОИСК







© 2025 chem21.info Реклама на сайте