Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление насыщенного водяного пара в мм рт. ст. при различных температурах

    ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ — отношение (выраженное в процентах) весового количества водяного пара в любом объеме газовой смеси (в частности, в воздухе) к весовому количеству насыщенного водяного пара, насыщающего такой же объем при той же температуре. О. в. характеризует степень насыщения водяным паром данной газовой смеси. Эту величину используют в различных технических расчетах. Она дает возможность, например, определить, при какой температуре в данной газовой смеси начнется конденсация водяного пара. Температура начала конденсации называется точкой росы. Зная эту точку, с помощью таблиц зависимости давления водяного пара от температуры определяют О. в. Для определения О. в. воздуха пользуются еще и психрометром. [c.184]


    В табл. П.18 приведены данные о вязкости воды, в табл. П.19 — о температуре кипения воды при различных давлениях, в табд. П.20 — о поверхностном натяжении воды, в табл. П.21—о показателе преломления воды, в табл. П.22 — о теплоемкости воды, в табл. П.23 — о давлении паров воды при различных температурах, в табл. П.24 — 0 свойствах насыщенного водяного пара, в табл. П.25об энтальпии перегретого водяного пара, [c.456]

    Давление насыщенного водяного пара при различных температурах [c.210]

Рис. 5. Шкала давления (в м.м рт. сг.) насыщенного водяного пара при различных температурах ( С) Рис. 5. <a href="/info/13758">Шкала давления</a> (в м.м рт. сг.) <a href="/info/501790">насыщенного водяного пара</a> при различных температурах ( С)
    Следовательно, в отличие от насыщенного водяного пара перегретый пар определенного давления может иметь самые различные температуры. Поэтому для характеристики состояния перегретого водяного пара необходимо знать уже два параметра, например температуру и давление. Разность температур перегретого и насыщенного пара того же давления (i — 1ц) называют перегревом цара. [c.17]

    Через некоторое время часть воды испарится и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая О А представляет собой график этой зависимости точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом — сосуществуют. Кривая О А называется кривой равновесия жидкость — пар или кривой [c.213]

Рис. 278. Взаимосвязь между давлением насыщенного водяного пара Р (ммр-г. ст. и константой скорости некоторых реакций к нри различных температурах Рис. 278. <a href="/info/939508">Взаимосвязь между</a> <a href="/info/501790">давлением насыщенного водяного пара</a> Р (ммр-г. ст. и <a href="/info/3323">константой скорости</a> <a href="/info/939174">некоторых реакций</a> к нри различных температурах

    Давление (в Па) диссоциации кристаллогидратов (давление насыщенного водяного пара над кристаллогидратами) при различных температурах [c.183]

    По этому приближенному уравнению легко найти давление насыщенного водяного пара при различных температурах и представить результаты в графической форме в виде кривой (в координатах р — Т), выражающей температурную зависимость давления пара или, что одно и то же, зависимость температуры кипения воды от давления. Из вида уравнения (а) следует, что рост температуры вызывает увеличение давления пара (см. с. 128). Аналогичным способом можно осуществить оценку р — Г-зависимости для процесса сублимации. Из (а), в частности, находим [c.124]

    Давление насыщенного водяного пара и содержание влаги в воздухе при различных температурах [c.18]

    На рис. 53, на котором в трех различных масштабах представлена зависимость давления насыщенного водяного пара от температуры, видно, как сужение температурного интервала уменьшает кривизну линий наклон кривой 3, отвечающей весьма узкому интервалу температур, практически постоянен. [c.188]

    Рассмотрим каждую из кривых более подробно. Начнем с кривой О А (рис. 73), отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды цилиндр снабжен поршнем, который закреплен в некотором положении (рнс. 74). Через некоторое время часть воды испарится и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представляет собой график этой зависимости точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друге другом—сосуществуют. Кривая ОА называется кривой равновесия жидкость — пар пли кривой кипения. В табл. 8 (стр. 202) приведены значения давления насыщенного водяного пара при нескольких температурах. [c.201]

    Всякая жидкость в открытом сосуде быстро испаряется, но в замкнутом пространстве она будет испаряться лишь до установления между нею и образуюш,имся паром динамического равновесия. Пар, находящийся в равновесии с жидкостью, называют насыщенным давление его при одной и той же температуре у различных жидкостей неодинаково. Например, при 20 °С давление насыщенного пара этанола 5,3 кПа, этилового эфира 55,5 кПа. Поскольку испарение эндотермич-но, нагревание, смещает динамическое равновесие в сторону парообразования и давление пара растет. Зависимость давления водяного пара от температуры видна из следующих данных  [c.281]

    В табл. 2 приведены значения давления насыщенного водяного пара при различных температурах. [c.38]

    Влагосодержание воздуха может быть различным, однако его максимальное значение при заданной температуре строго определено насыщенным состоянием водяных паров. В связи с этим для характеристики степени увлажненности воздуха используют показатель относительной влажности воздуха, который отражает отношение парциального давления водяного пара, содержащегося во влажном воздухе, к давлению насыщения водяного пара при данной температуре (т. е. к максимально возможному парциальному давлению водяного пара при этой температуре)  [c.537]

    В нашем распоряжении точные данные о давлениях насыщенного водяного пара при различных температурах (измеренных по шкале газового термометра), об объемах насыщенного пара и воды и о теплотах испарения. Читатели могут, вслед за Томсоном, вычислить левую часть уравнения (IX, 8). Они тогда найдут, как до них нашел Томсон  [c.180]

    Поместим чашку со льдом и сосуд с разбавленным водным раствором соли под стеклянный колокол (рис. 81). При постоянной температуре ниже 0°С откачаем из колокола воздух. Вода будет испаряться как из раствора, так и из льда, пока не будет достигнута концентрация водяного пара, отвечающая равновесию, т. е. давлению насыщенного пара. Так как был взят разбавленный раствор произвольной концентрации, то чрезвычайно мало вероятно, чтобы при данной температуре давление насыщенного пара над ним случайно оказалось равным давлению пара над льдом. Поэтому допустим, как бол ее общий случай, что давления различны. Пусть насыщенный водяной пар над раствором обладает меньшим давлением, чем над льдом. Тогда пар, насыщенный по отношению к льду, будет пересыщенным в отношении к раствору и будет частично конденсироваться в нем. В результате понижения концентрации пара он окажется ненасыщенным в отношении льда, и некоторое количество последнего вновь испарится, доводя пар до насыщения в отношении льда. Пар, вновь сделавшись пересыщенным в отношении раствора, опять частично в нем сконденсируется. [c.243]


    Давление насыщенных водяных паров и их содержание в газе ири различной температуре [c.154]

    Парциальное давление газа. При определении молекулярных масс газов очень часто приходится измерять объем газа, собранного над водой и потому насыщенного водяным паром. Определяя в этом случае давление газа, необходимо вводить поправку на парциальное давление водяного пара. При обычных условиях различные газы смешиваются друг с другом в любых соотношениях. При этом каждый газ, входящий в состав смеси, характеризуется своим парциальным давлением. Оно представляет собой то давление (р ), которое производило бы имеющееся в смеси количество данного газа, если бы оно одно занимало при той же температуре весь объем, занимаемый смесью. [c.24]

    Давления паров веществ берутся из таблиц и графиков. График давления паров, приспособленный для расчета дистилляции с насыщенным водяным паром, показан на рис. 10. Давление водяного пара отложено на этом графике не от 4 Л1м рт. ст., а от 760 мм рт. ст., вниз, в результате чего точки (давление паров воды при температуре 0°С) пересечения кривой давления водяного пара с кривыми давления пара различных жидкостей непосредственно указывают искомую температуру кипення. Кривая давления водяного пара для любого другого давления может быть построена аналогичным способом путем нанесения всех точек в соответствующем масштабе (пунктирная кривая иа рис. 10). Пересечение полученных кривых давления водяного нара с кривыми давления [c.27]

    При различных температурах воздух может содержать различное максимальное количество водяного пара. Воздух с максимальным содержанием водяного пара называется насыщенным. Точка насыщения определяется тем услов иам, что парциальное давление водяного пара не может превышать давление насыщения водяного пара, соответствующего температуре воздуха. Давление насыщения, соответствующее различным температурам, можно определить по номограмме на рис. 15-5. Удельное влагосодержание насыщенного воз1духа определяется по формуле [c.538]

    Для специальных целей имеются различные варианты обычного психрометра. Коллинз [37] описал переносной прибор для непрерывной регистрации и интегрирования градиентов температуры и влажности атмосферы на высоте 1—16 м. Брентон [26] предложил психрометр для измерения относительной влажности при температурах ниже точки замерзания. В этом психрометре образец газа пропускают через нагретую ячейку, температуру которой повышают, но содержание влаги в образце при этом не меняется. По показаниям сухого и влажного термометров при повышенной температуре определяют точку росы. Затем находят относительную влажность как частное от деления значения давления пара при температуре точки росы на давление насыщенного пара при температуре окружающей среды, измеренной сухим термометром. Уоррелл [210] разработал приспособление для определения относительных влажностей воздуха (в процентах) при температуре среды (сухой термометр) выше 100 °С. Психрометрический метод можно применять при температуре на влажном термометре не выше 100 °С. Давление насыщенных паров воды, используемое в качестве стандарта, можно установить по табличным данным для насыщенного водяного пара при температуре, фиксируемой сухим термометром. Эти данные приведены для температур приблизительно до 205 °С (400 °F). [c.577]

    Процесс конденсации водяяого пара проводился в широком диапазоне температур (от 50 до 200° К) в присутствии различных газов воздуха, водорода, углекислого газа, дифтордихлорметана, аргона, гелия и др. [113]. Во всех случаях имело место поглощение газа иа охлаждаемой поверхности при конденсации водяного пара в твердое состояние. Исследования показали, что при температуре поверхности 199°К скорость поглощения газов ниже, чем при 77° К. Давление в аппарате при конденсации пара и непрерывном. напуске raisa в объем поддерживалось строго постоянным при прекращении конденсации водяного пара в системе происходило резкое возрастание общего давления за счет напуска неконденсирующегося газа. Поглощение газа при конденсации водяного лара свидетельствует об адсорбции молекул газа на ло верхност и непрерывно образующегося сублимационного льда. Адсор- бированные молекулы газа замуровываются на поверхности непрерывно набегающим паром, который мгновенно превращается в лед, оставляя под слоем льда неконденсирующийся газ. Диапазон ра бочего плато , т. е. области давлений, в которой скорость процесса замуровывания неконденсирующегося газа под слоем льда остается постоянной, определяется давлением насыщения водяного пара на движущейся границе льда в начальный и конечный момент работы насоса. Чем ниже началь ная температура и выше конечная, тем больше рабочий участок поглощения неконденсирующегося газа. [c.503]

    Правило фаз можно понять, рассмотрев несколько простых примеров. Разберем систему, показанную на рис. 11.7. Она состоит из вещества — воды (в ее различных формах), находящейся в цилиндре с подвижным норшнем (позволяющим изменять давление) цилиндр с водой помещен термостат, температуру в котором можно изменять. Если присутствует только одна фаза, то можно произвольно в широких пределах изменять ак температуру, так и давление число степеней свободы равно 2. Жидкая "вода, например, может находиться при любой температура между температурами замерзания и кипения и подвергаться любому давлению. Но если в системе присутствуют две фазы, то давление автоматически определяется температурой число степеней свободы уменьшается до 1. Так, чистый водяной пар в равновесии с водой при данной температуре имеет определенное давление — давление насыщенного водяного пара при этой температуре. Наконец, если в равновесии находятся три фазы — лед, вода и водяной пар, то как температура, так и давление должны быть вполне определенными число степеней свободы равно нулю. Такие усло- вия соответствуют тройной точке льда, воды и водяного пара. Это наблюдается при температуре +0,0099 °С и давлении 0,0060 атм. [c.365]

    Поместим чащку со льдом и сосуд с разбавленным водным раствором соли под стеклянный колокол (рис. 52). При постоянной температуре ниже 0°С откачаем из колокола воздух. Вода будет испаряться как из раствора, так и из льда, пока не будет достигнута концентрация водяного пара, отвечающая равновеоию, т. е. давлению насыщенного пара. Так как был взят разбавленный раствор произвольной концентрации, то чрезвычайно мало вероятно, чтобы при данной техМпературе давление насыщенного пара над ним случайно оказалось равным давлению пара над льдом. Поэтому допустим, как более общий случай, что давления различны. Пусть насыщенный водяной пар над раствором обладает меньщим давлением, чем над льдом. Тогда пар, насыщенный по отношению к льду, будет пересыщенным в отношении к раствору и будет частично конденсироваться в нем. В результате понижения концентрации пара он окажется ненасыщенным в отношении льда, и некоторое количество последнего вновь испарится, доводя пар до насыщения в отношении льда. Пар, вновь сделавшись пересыщенным в отношении раствора, опять частично в нем сконденсируется. Процессы эти будут продолжаться, т. е. будет происходить испарение льда и конденсация воды в растворе. Однако по. мере разбавления раствора, т. е. повышения содержания в нем воды, давление насыщенного водяного пара над ним тоже возрастает и постепенно достигнет давления насыщенного пара над [c.190]

    В табл. 4 приведены упругость насыщенных водяных паров и абсолютная влажность в состоянии насыщения при разных температурах и нормальном давлении (760 мм рт. ст. или 101,325 кн1м ). На графике (рис. 9) показано влагосодержание естественных газов при различных температурах и давлениях. [c.36]


Смотреть страницы где упоминается термин Давление насыщенного водяного пара в мм рт. ст. при различных температурах: [c.209]    [c.209]    [c.353]    [c.11]    [c.209]    [c.248]   
Смотреть главы в:

Техно-химические расчеты -> Давление насыщенного водяного пара в мм рт. ст. при различных температурах




ПОИСК





Смотрите так же термины и статьи:

Давление водяных паров

Давление насыщенного пара

Давление насыщенных паров

Температура на давление насыщенного пара

Температура насыщенного пара



© 2025 chem21.info Реклама на сайте