Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы неконденсирующиеся

    В нижней части стабилизационной колонны при помощи пара поддерживается температура порядка 130—140 , чтобы бензин мог освободиться от всех газообразных углеводородов, в присутствии которых значительно повышается упругость его паров при нормальных условиях. Чаще всего колонна имеет 35—40 тарелок. Большая часть удаляемых через верх колонны газов конденсируется и собирается в находящемся под давлением сосуде, из верхней части которого отводятся неконденсирующиеся газы, главным образом метан и этан. Жидкий продукт удаляется со дна сосуда. Вторичной перегонкой под давлением этот жидкий продукт может быть разделен на составляющие компоненты. [c.17]


    Процесс конденсации совершается в присутствии неконденсирующихся газов (воздуха, присадок), которые уменьшают парциальное давление пара, а следовательно и температуру [c.134]

    Сжиженный газ и газовый бензин образуют так называемые газоконденсатные жидкости, которые в настоящее время играют важную роль в нефтедобывающих странах. В данном труде рассматривается лишь использование этих продуктов в качестве исходного сырья для производства химических продуктов. Непрерывно растет, особенно в последние годы, значение этана, выделяемого из природных газов. Раньше после извлечения газового бензина и сжиженных газов из газоконденсата этан вместе с метаном как неконденсирующиеся компоненты поступал в сеть топливного газа. [c.21]

    В заключение еще раз отметим, что все компрессионные манометры можно применять для измерения парциального давления газов, неконденсирующихся при заданных степени сжатия и температуре. Пары веществ, имеющие при комнатной температуре давление выше 4 мм рт. ст., можно легко обнаружить по расхождению результатов измерений, возникающему при переходе отводного интервала измерений к другому [51 ]. [c.451]

    В заключение необходимо рассмотреть конденсацию смеси конденсирующихся паров и инертного газа, неконденсирующегося в условиях [c.632]

    При десублимации пара последний захватывает и замуровывает газы, неконденсирующиеся при температуре жидкого азота ( криозахват ). При этом скорость откачки складывается из скорости откачки вакуумного насоса и криозахвата. При достаточно большом отношении расхода водяного пара к расходу неконденсирующихся газов откачной вакуумный насос может быть отключен. [c.437]

    Опытные и расчетные данные по конденсации паров сведены в табл. 6. В аппарате конденсируются углеводородные пары, со-де ржащие примеси газов, неконденсирующихся в данном интервале температур и давлений. Интенсивность конденсации пара в этих аппаратах зависит от скорости отвода тепла, выделяющегося при конденсации и скорости переноса вещества (притока частиц пара к поверхности конденсации) молекулярной и турбулентной диффузией. [c.82]

    Пароэжекторные насосы. Основные параметры пароэжекторных вакуумных насосов должны соответствовать данным, приведенным в табл. 1.24 [38, 39]. Расход отсасываемой смеси, указанный в табл. 1.24, принят при нормальном абсолютном давлении у входа в вакуумный насос при следующих рабочих условиях температура охлаждающей воды на входе в конденсаторы не более 28°С давление охлаждающей воды на входе в конденсаторы не менее 0,02 МПа по манометру, противодавление на выходе из эжектора последней ступени 0,11 + 0,01 МПа для насосов с абсолютным давлением на входе, равным 10,6 кПа и 0,13 0,01 МПа для насосов с абсолютным давлением па входе, равным 21,2 кПа средняя молекулярная масса неконденсирующихся газов в отсасываемой смеси 30 20 давление и температура рабочего пара, а также расчетное содержание водяного пара и конденсирующихся с ним продуктов в отсасываемой смеси принимаются по табл. 1.25. [c.136]


    После выделения конденсатного масла поток газа вместе с находящимися продуктами синтеза, кипящими ниже 150° и составляющими примерно 35% от общего количества продуктов синтеза, направляют на. установку адсорбции активным углем. Здесь из газового потока извлекают остаточные продукты синтеза, включая и такие неконденсирующиеся в нормальных условиях компоненты, как бутан и пропан. [c.94]

    Поступающие в печь газы должны быть свободны от серы и азота. Это достигается путем предварительной щелочной и водной промывки [17]. Конверсия олефинов исходной смеси достигает 90%. Выходящие газы охлаждаются и обрабатываются затем абсорбционным маслом (высококипящей полимерной фракцией) неконденсирующаяся часть выходит из абсорбера растворившаяся часть разгоняется в стабилизирующей колонне (при 24,5 кгс/см ) и в колонне для перегонки под давлением (при 7 кгс/см ). Полимер-бензин образуется в виде средней фракции, а абсорбционное масло остается в нижней части колонны. Можно работать также без промежуточной абсорбции. [c.243]

    После флорентийского сосуда водный слой, содержащий пропиленхлоргидрин, возвращается на гипохлорирование, нижний слой, содержащий дихлорпропан и изопропилхлорекс,. откачивается на склад. Абгазы нейтрализуются в щелочном скруббере и подвергаются компримированию до 20 ат для выделения путем конденсации непрореагировавшего пропилена, который возвращается в процесс неконденсирующийся газ, содержащий незначительное количество пропилена, а также пропан, водород и инертные вещества сжигаются на факеле. Часть реакционного раствора, содержащего пропиленхлоргидрин и соляную кислоту, непрерывно отводится из гипохлоратора и подвергается нейтрализации и дегидрохлорированию известковым молоком. [c.329]

    Неконденсирующиеся вверху вакуумной колонны компоненты, представляющие смесь легких фракций, газов разложения, паров воды и воздуха (засасываемый через неплотности), выводятся из колонны 48 и охлаждаются в аппарате воздушного охлаждения 46 (его может и не быть), затем в водяной холодильник поверхностного типа 45, после которого газожидкостная смесь поступает в систему создания вакуума (см. ниже, рис. И-4). [c.15]

    Установка перегородок в межтрубном пространстве кожухотрубных теплообменников изменяет характер потока. Поэтому режим протекающего в межтрубном пространстве потока жидкости или неконденсирующегося газа пока еще не может быть точно описан какой-либо математической моделью. Несоответствия особенно очевидны, если читатель попытается воспроизвести переходные режимы потока в трубах при возмущениях, наносимых в межтрубном пространстве теплообменника [c.182]

    Схемы промышленных установок по разделению углеводородов различаются между собой в зависимости от состава перерабатываемого сырья, требуемой глубины извлечения компонентов и других факторов. В качестве примера схем современных крупных газобензиновых заводов можно привести схему газобензинового завода фирмы Филлипс петролеум , перерабатывающ,его попутный газ с двух промысловых компрессорных станций и одной газосборной станции, расположенной на самом заводе (рис. 2). Очиш енный от сероводорода газ компримируется до 56 ати и при этом давлении поступает на извлечение тяжелых углеводородов в два параллельно работающих абсорбера. Насыщенное масло из абсорберов проходит через теплообменники, где нагревается горячим регенерированным маслом и направляется в выветриватель для удаления неконденсирующихся газов. После выветривателя насыщенное масло нагревается в змеевике трубчатой печи до 215° и поступает в десорбер высокого давления, работающий под давлением 17,5 ати. В десорбере из масла удаляется основная часть тяжелых углеводородов. Окончательная десорбция углеводородов протекает во втором десорбере при давлении 2,8 ати. Отпаривание углеводородов в обоих десорберах производится при помощи острого пара. [c.22]

    Отсасываемая эжектор паро-воздушная смесь состоит из неконденсирующихся газов термического распада сырья, воздуха (засасываемого через неплотности аппаратуры, выделившегося в барометрическом конденсаторе из охлаждающей воды и поступившего вместе с водяным паром), нефтяных паров, сероводорода. [c.249]

    По данным ГрозНИИ, количество этих газов зависит от многих факторов, главным образом от типа сырья, температурного режима и типа трубчатой печи. По этим данным количество неконденсирующихся углеводородных газов составляет 0,005—0,42%, считая на мазут, а количество инертных газов соответственно 0,001—0,14%. В составе инертных газов 70—90% приходится на воздух, подсасываемый через неплотности системы. [c.249]

    Степень герметичности установки в течение времени может изменяться, поэтому ее необходимо контролировать, определяя скорость падения разрежения при отключенной системе отбора неконденсирующих газов. [c.137]


    Процесс конденсации продолжается до участка поверхности, на котором достигается равенство = I t. После конденсации и охлаждения один или несколько компонентов выводятся из системы, а обращаемая часть возвращается в технологический процесс. Неконденсирующиеся компоненты препятствуют эффективной конденсации, но высокие скорости движения газовых составляющих способствуют удалению конденсата из застойных зон в деформированных участках труб. Для таких случаев на зависимостях д = f(l) и Q = = /(/) не всегда отмечается характерный участок со сниженной плотностью теплового потока. После выпадения конденсата охлаждение газовых компонентов происходит в присутствии экранирующего слоя конденсата, поэтому процесс охлаждения идет не столь эффективно. По условиям технологии производства часто охлаждают только обращаемую составляющую парогазовой смеси, а другие компоненты смеси направляют в атмосферу или дренаж. В этом случае аппарат целесообразно эксплуатировать только в режиме конденсации с дальнейшим разделением газа н жидкости. Доохлаждение газа или жидкости возможно в отдельных АВО, в которых обеспечиваются высокие скорости движения продукта по всему сечению труб. [c.147]

    Когда происходит теплообмен между однофазными потокаш (неиснаряющиеся жидкости или неконденсирующиеся газы), отступление от этого принцппа, ради удобства трубной обвязки теплообменника, почти не сказывается на эффективности теплопередачи, так как среды физически однородны и влияние конвекции на тенло-съем незначительно. Если же теплообмен связан с исиарением или конденсацией, как это имеет место на установках гидроочпстки, принцип направленной конвекции должен соблюдаться обязательно. В противном случае силы естественной конвекции будут направлены против движения потока (рис. 19). Из-за резкого различия физи- [c.86]

    Неконденсирующиеся газы (газ стабилизации) направляются в заводскую сеть нестабильная головка, включая пропан и бутаны, возвращается в качестве орошения, а балансовое количество выводится с установки. [c.112]

    Пары верхнего продукта стабилизатора, состоящие в основном пз бутановой фракции, конденсируются и охлаждаются в четырех трубчатых конденсаторах-холодильниках Х4. Конденсат поступает в емкость ЕЗ, откуда часть его насосом НЮ подается для орошения стабилизатора, а избыток направляется в емкость для жидкого газа. Неконденсирующиеся газы, выделяюпщеся из емкости ЕЗ, через клапан поступают в общую газовую сеть. [c.165]

    Однако более эффективным методом является дегидрирование бутана в две стадии [6]. Продуктами первой стадии являются неизменившийся бутан, бутилен и неконденсирующиеся газы. Неконденсирующиеся газы сразу же удаляются, а бутан и бутилен концентрируются в системе для улавливания паров, причем получается продукт для второй стадии дегидрирования. К хорошим выходам бутадиена приводят высокая температура и низкое давление дегидрирования бутилена. Катализатором обычно служит активированная окись алюмнния, пропитанная окисью хрома или магния [7, 8]. Пропускание бутана над катализатором при высоких начальных температурах (около 600°) и нормальном давлении при времени контакта 2,1 сек. приводит к высокой степени превращения бутана в бутилен. Высокая начальная температура процесса сводит к минимуму отравление катализатора, возникающее вследствие поглощения влаги во время регенерации. Обычно, когда температура понижается, катализатор теряет активность. Образовавшийся в результате реакции водород удаляют сжатием газообразного бутилена до 7 ат. Последующий контакт бутилена с катализатором такого же типа при 573° и давлении 50 мм в продолжение 0,35 сек. приводит к дегидрированию бутнлена в бутадиен с выходом 35,4%. После удаления неконденсирующихся газов получают бутадиен 18-процентной концентрации. [c.32]

    При двухступенчатой холодной сепарации (см. рис. И, 12) в пер вой ступени выделяется циркулирующий водородсодержащий га прп 40 —50 °С. Давление в сепараторе зависит от требуемого давленш в реакторе и возможной потери давления газа в сети перед подачез в сепаратор. Во второй ступени из гидрогенизата выделяется раство репный углеводородный газ. Давление в сепараторе второй, стунен складывается из давления в колонне стабилизации и давления, ко торое необходимо для подачи гидрогенизата в колонну. Наличие второй ступени сепарации гарантирует исключение прорыва сред1 высокого давления в стабилизационную колонну кроме того, сниже ние доли неконденсирующихся компонентов в верхнем продукт колонны улучшает коэффициент теплопередачи в конденсаторе холодильнике. [c.72]

    Равновесие газ - жидкость. Раствор газа в жидкости существует совместно с находящимся над жидкостью газом. При этом содержание газа в растворе зависит не только от рода газа и жидкости, а также от давления, температуры и состава газовой фазы. Данное равновесие аналогично парожидкостному равновесию. С)тличие здесь состоит в том, что газовая фаза находится в надкритической области (газ неконденсируем) при обычных давлениях и температурах. При зтом растворимость газа в жидкой фазе обычно мала. [c.234]

    Диборан ВгНб — бесцветный реакционноспособный газ, хорошо растворяется в эфире и сероуглероде, очень быстро гидролизуется водой [6]. В отсутствие влаги не воспламеняется на воздухе, но во влажном воздухе воспламенение сопровождается взрывом. Медленно разлагается при хранении, однако в чистом виде при хранении в запаянном стеклянном сосуде потери не превышают 10% в год. Так, например, исходный продукт содержал 99,4% диборана и 0,6% газа, а после шести месяцев хранения при —18° около 2% диборана разложилось, так как в образце содержалось 97,2% диборана, 1,5% тетраборана и 1,3% газа, неконденсирующегося при температуре кипения диборана. При температуре около 100° диборан разлагается с образованием тетраборана, пентаборанов и твердых продуктов. [c.105]

    В аппаратах и трубопроводах холодильных установок вместе с рабочим телом (хладоагент, смазочное масло) могут находиться газы, неконденсирующиеся при температурах и давлениях данной установки. Кроме воздуха, являющегося основной составной частью этих газов, в холодильной системе могут быть продукты ча Стич1Ного разложения смазочного масла и хладоагента, однако содержание их обычно невелико. [c.122]

    Заданное остаточное давление в вакуумной колонне обеспечивается конденсацией паров, уходящих с верха колонны, и эжекти-рованием неконденсирующихся газов и низкокипящих фракций. При перегонке мазута с верха вакуумной колонны уходят пары вакуумного газойля вместе с водяным паром и инертными газами. К последний относятся газы разложения или термического распада сырья (легкие углеводороды, СО2, НаЗ и др.) и воздух, проникающий через неплотности аппаратуры, выделяющийся в конденсаторах из охлаждающей воды и поступающий в растворенном виде вместе с сырьем и водяным паром. [c.196]

    Содержание газа в паре. Наличие в паре воздуха или какого-либо другого неконденсирующегося газа приводит к значительному снижению коэффициента теплоотдачи при конденсации. Примесь газа ухудшает теплоотдачу хотя бы потому, что, согласно закону Дальтона, она уменьшает давление насыщения пара и тем самым используемую разность температур. Кроме того, следует иметь в виду, что воздух или другой газ не конденсируется, а скапливается у стенки и препятствует доступу пара к ней. Пар в этом случае должен диффундировать через слой неконденсирующегося газа у поверхности конденсации. Были проведены опыты по конденсации водяного пара из смеси его с воздухом, Нг, СН4 и другими газами. Эти опыты были проведены как с неподвижной парогазовой смесью, так и при скорости ее перемещения, равной примерно 7 м1сек. Полученные данные представлены на фиг. 38, где изображена зависимость коэффициента теплоотдачи а при конденсации от отношения парциальных давлений водяного пара (Р1) и неконденсирующегося газа р - Из графика видно, что значение а резко снижается даже при небольшом добавлении газа. При отношении Р2 Р1 = 3 коэффициент теплоотдачи снижается приблизительно в 100 раз, медленно приближаясь при дальнейшем увеличении содержания газа к значениям а, соответствующим чистому газу. [c.92]

    Холодная сепарация одноступенчатая по давлению (см. рис. 14 применяется, если стабилизационная колонна должна работать нр1 повышенном давлении с подачей водяного пара. В этом случае дол неконденсирующихся компонентов в верхнем продукте колонш снижается за счет присутствия водяного пара, поэтому увеличенга абсолютного количества газов практически не отражается на коэффи циенте теплопередачи конденсатора-холодильника. [c.72]

    Полная ковденсацця бензиновых фракций (чистых, а также содержащих водяные пары) при отсутствии неконденсирующихся газов Конденсация и частичное охлаждение бензиновых фракций (скорость жидкости 0,2—0,4 м/с) [c.104]

    Конденсация и частичное охлаждение бензино-лигроиновых фракций, содержащих до 15% неконденсиру-юпщхся газов (скорость жидкости 0,4 0,6 м/с) [c.104]

    При расследовании причин аварии провели анализы продуктов в отдельных узлах установки, д Из нескольких баллонов, находившихся на складе, были взяты пробы и проведен анализ жидкого хлора на содержание нелетучих, неконден-Г "1 сирующихся газов и треххлористого азота. Ни Рис. 30 Ловушки ОДНОМ из баллонов треххлористый азот, пред-предотвращения ставляющий серьезную опасность вследствии его оседания отложе- " нестабильности, не был обнаружен. В баллоне ний в хлораых ли- же, бывшем в работе, обнаружено значительное ниях. количество нелетучего агента и неконденсирую-щийся газ, оказавшийся водородом. [c.114]

    В литературе имеются довольно разнообразные сведения о составе газов окисления (табл. 24), что объясняется проведением исследований на окислительных установках разного типа с полользованием гудрона разного фра.кционного состава и при разных режимах окисления. Степень расщифровки состава газов также неодинакова. Компоненты крнденсирующейея части углеводородной составляющей практически не идентифицируются отмечено лишь наличие фенолов, кислот, спиртов, альдегидов и кетонов [2] и указывается, что конденсат имеет молекулярную массу 250—260, плотность 880—890 кг/м до 320 С выкипает 30—50% и до 350°G — 63% [2, 262], некоторое количество выкипает вплоть до 480 °С [265]. В то же время неконденсирующиеся и несколько более тяжелые углевоДороды идентифицированы подробно [211]  [c.168]

    Для предупреждения коррозии нужно изменять температурный режим работы газового тракта. Так, на Киришском и Омском НПЗ температуру газов стремятся поддерживать не ниже 140—160 °С. Заслуживает внимания и опыт фирмы British Petroleum, по которому в сепаратор разделения газовой и жидкой фаз подают горячее орошение (соляр, температура 150 °С). Неконденсирующиеся газы поступают в печь для сжигания при температуре не ниже 130 °С. Таким образом, ни на одном участке газового тракта не создаются условия для конденсации водяных паров, и коррозионно-активная среда не образуется [54]. [c.180]

    Заслуживает внимания недавно запатентованный фирмой Нейшнл рисерч корпорейшн метод прямого некаталитического окисления этана в окись этилена. При работе по этому методу кислород смешивают со свежим этаном и рециркулирующим газом с таким расчетом, чтобы молярное отношение СаНе Оа в смеси составляло от 10 до 15. Реакция проводится прп 500—700° под давлением от 1 до 7 ат. Газы, выходящие из реактора, пропускаются через окись алюминия для разложения перекиси водорода, затем охлаждаются и поступают в скруббер для конденсации окиси этилена, формальдегида и ацетальдегида. Часть неконденсирующихся газов сбрасывается, а остальные подаются на рециркуляцию в реактор. [c.93]

    Линии 1 — мазут 11 — дистиллят < 350° С 111 — широкая масляная фракция IV — дистиллят 350—460 С V — дистиллят 460—490° С VI — дистиллят >490° С VII — гудрон VIII — ВОДЯНОЙ пар IX —вода X — неконденсирующиеся пары и газы. [c.303]

    Кроме водяных паров, в конденсатор смешения поступают неконденсирую-щвеся (перманентные) газы, колпчество которых принимается из опыта работы вакуумных установок — 0,1% от сырья, что составит [c.284]

    При эксплуатации холодильной установки в верхней части конденсаторов и ресиверов скапливаются неконденсирующиеся газы, обычно воздух. При этом псвышается общее давление [c.178]

    Продукты верха депропанизатора и дебутанпзатора являются коммерческими продуктами, которые должны соответствовать определенным спецификациям. Содержание неконденсирующихся компонентов в них ограничивается. В обычных случаях пропан, бутан или смесь компонентов сжиженного газа менее ценны (на единицу объема получаемой продукции), чем более тяжелые продукты, такие, как газовый бензин, углеводородный конденсат и др. В свою очередь, эти продукты должны содержать пропан и бутан в количествах, которые допускаются спецификациями. Кроме того, требуется чувствительный контроль, обеспечивающий достаточно низкое содержание метана в сырье, поступающем в депропанизатор и дебутанизатор после предыдущей ректификационной колонны. [c.313]


Смотреть страницы где упоминается термин Газы неконденсирующиеся: [c.22]    [c.24]    [c.249]    [c.313]    [c.282]    [c.283]    [c.212]    [c.213]    [c.29]    [c.82]    [c.138]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.242 ]

Химико-технический контроль лесохимических производств (1956) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Вакуумная камера отвод водяного пара й неконденсирующихся газов GOG

Влияние неконденсирующихся газов на процессы фазовых превращений в вакууме

Выпуск неконденсирующихся газов из системы

Газы неконденсирующиеся реакционные производства формалина

Газы неконденсирующиеся сжатые, правила работы

Газы неконденсирующиеся, выпуск из системы

Испарение в условиях высокого вакуума по неконденсирующемуся газу

Испарение в условиях среднего и низкого вакуума по неконденсирующемуся газу

Конденсация в присутствии неконденсирующихся газов

Конденсация влияние примесей неконденсирующихся газов

Конденсация водяного пара при вынужденном движении неконденсирующегося газа

Конденсация паров в присутствии неконденсирующихся газов

Механизм объемной конденсации пара на нейтральных молекулах неконденсирующегося газа

Определение содержания неконденсирующихся газов в системе холодильной установки и исследование эффективности работы воздухоотделителя АВ

Продувка нагревательных элементов и влияние на их конструкцию неконденсирующихся газов, содержащихся в теплоносителе

Теплоотдача к смеси пара и неконденсирующегося газа

Удаление неконденсирующихся газов

Установление начального орошения. Выпуск неконденсирующихся газов



© 2025 chem21.info Реклама на сайте