Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппараты с непрерывным контактом взаимодействующих потоков

    Процессы в расплаве являются вариантом газификации угля в режиме уноса. В них уголь и газифицирующий агент подаются на поверхность расплавов металлов, шлаков или солей, которые играют роль теплоносителей. Наиболее перспективен процесс с расплавом железа, поскольку можно использовать имеющиеся в ряде стран свободные мощности кислородных конвертеров в черной металлургии [97]. В данном процессе газогенератором служит полый, футерованный огнеупорным материалом аппарат-конвертер с ванной расплавленного (температура 1400—1600°С) железа. Угольная пыль в смеси с кислородом и водяным паром подается с верха аппарата перпендикулярно поверхности расплава с высокой скоростью. Этот поток как бы сдувает образовавшийся на поверхности расплава шлам и перемешивает расплав, увеличивая поверхность его контакта с углем. Благодаря высокой температуре газификация проходит очень быстро. Степень конверсии углерода достигает 98%, а термический к. п. д. составляет 75— 80%. Предполагается, что железо играет также роль катализатора газификации. При добавлении в расплав извести последняя взаимодействует с серой угля, образуя сульфид кальция, который непрерывно выводится вместе со шлаком. В результате удается освободить синтез-газ от серы, содержащейся в угле, на 95%. Синтез-газ, полученный в процессе с расплавом, содержит 677о (об.) СО и 28% (об.) Нг. Потери железа, которые должны восполняться, составляют 5—15 г/м газа. [c.97]


    Перегонка с ректификацией - наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах - ректификационных колоннах - путем многократного противоточного контактирования паров и жидкости. Контактирование потоков пара и жидкости может производиться либо непрерывно (в насадочных колоннах) или ступенчато (в тарельчатых ректификационных колоннах). При взаимодействии встречных потоков пара и жидкости на каждой ступени контактирования (тарелке или слое насадки) между ними происходит тепло- и массообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами пар несколько обогащается низкокипящими, а жидкость - высококипящими компонентами. При достаточно длительном контакте и высокой эффективности контактного устройства пар и жидкость, уходящие из тарелки или слоя насадки, могут достичь состояния равновесия, то есть температуры потоков станут одинаковыми, и при этом их составы будут связаны уравнениями равновесия. Такой контакт жидкости и пара, завершающийся достижением фазового равновесия, принято называть равновесной ступенью, или теоретической тарелкой. Подбирая число контактных ступеней и параметры процесса (температурный режим, давление, соотношение потоков, флегмовое число и др.), можно обеспечить любую требуемую четкость фракционирования нефтяных смесей. [c.195]

    Известно множество конструкций колонных аппаратов, обусловленное различием характера и режима осуществляемых технологических процессов. Часто для одних и тех же процессов применяют различные аппараты. Всеобъемлющая классификация колонных аппаратов затруднительна, однако их можно классифицировать по отдельным характерным признакам. В аспекте рассматриваемой проблемы напрашивается классификация по способу контакта взаимодействующих потоков (фаз). При этом аппараты можно разделить на два относительно обширных класса. К первому принадлежат аппараты с непрерывным контактом взаимодействующих потоков на всем пути их движения. Сюда относятся несекционированные колонны насадочные (со сплошным слоем насадки), пленочные и барботажные (с одним, неразделенным, слоем жидкости или твердых частиц), распылительные. [c.13]

    АППАРАТЫ С НЕПРЕРЫВНЫМ КОНТАКТОМ ВЗАИМОДЕЙСТВУЮЩИХ ПОТОКОВ [c.15]

    Наиболее распространен в инженерной практике второй метод — определение рабочей высоты массообменных аппаратов по требуемому числу так называемых теоретических тарелок, или теоретических ступеней контакта. Теоретической тарелкой называется однократный контакт взаимодействующих потоков, завершающийся достижением фазового равновесия. Этот метод расчета особенно нагляден применительно к секционированным, или ступенчатым, аппаратам (рис. 1Х-15, а). В последних одна из фаз (например, жидкая) стекает сверху вниз, последовательно проходя через некоторое число поперечных распределительных перегородок (тарелок), на каждой из которых удерживается слой жидкости определенной высоты. Избыток жидкости, поступающей с вышележащей тарелки, непрерывно стекает на нижележащую. Вторая фаза (например, газовая, паровая) движется вверх навстречу потоку жидкости, барботирует через все ее слои на тарелках и покидает аппарат в верхнем его сечении. Если предположить, что в результате интенсивного массообмена на каждой тарелке покидающие ее фазы приходят в равновесие, то рассматриваемый процесс можно изобразить в диаграмме у—х, начертив на ней предварительно равновесную и рабочую линии (рис. 1Х-15, б). [c.452]


    И движущимися относительно друг друга. Разделение осуществляется обычно в колонных аппаратах при многократном или непрерывном контакте фаз. При каждом контакте из жидкости испаряется преимущественно НК, которым обогащаются пары, а из паровой фазы конденсируется преимущественно В К, переходящий в жидкость. Обмен компонентами между фазами позволяет получить в конечном счете пары, представляющие собой почти чистый НК- Эти пары, выходящие из верхней части колонны, после их конденсации в отдельном аппарате дают дистиллят, или ректификат (верхний продукт) и флегму — жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися по колонне парами. Снизу колонны удаляется жидкость, представляющая собой почти чистый ВК, — остаток (нижний продукт). Часть остатка испаряют в нижней части колонны для получения восходящего потока пара.  [c.472]

    В насадочных колоннах взаимодействие фаз осуществляется при непрерывном их контакте в потоке. При заданной конструкции насадки эффективность массопередачи существенно зависит от гидродинамического режима движения потоков в аппарате. [c.122]

    Основным преимуществом метода ступеней контакта по сравнению с методом единиц переноса является возможность использования допущения о постоянстве физических свойств системы и потоков в пределах небольшого изменения концентрации компонентов, т. е. для одной ступени контакта или слоя насадки небольшой высоты. Это дает возможность, во-первых, рассчитывать достаточно просто массопередачу в любых условиях контакта и взаимодействия фаз и, во-вторых, позволяет использовать единую методику расчета массопередачи в бинарных и многокомпонентных смесях как при ступенчатом, так и при непрерывном контакте фаз. В связи с этим расчет массопередачи в аппаратах рассматривается в данной книге на основе локальных и общих характеристик эффективности массопередачи Еу, Ему и фу, т. е. при помощи метода ступеней контакта. [c.194]

    Дифференциально-контактные экстракторы отличаются непрерывным контактом между взаимодействующими фазами и непрерывным изменением концентрации целевого компонента в растворе и в экстрагенте. В экстракторах с непрерывным контактом фаз равновесие между потоками жидкостей не может быть достигнуто ни в одном сечении аппарата. Эти аппараты представляют собой вертикальные колонны, в которых относительное движение фаз обеспечивается силой тяжести (см. рис. 5.8, а 5.22 7.12 и 7.14). [c.463]

    Характер контакта фаз — это существенный признак, по которому массообменные аппараты делятся на две большие группы. При непрерывном контакте потоки взаимодействуют непрерывно, без резких изменений характера течения по высоте. Типичный пример таких аппаратов — насадочные колонны. Аппараты со ступенчатым контактом разделены по высоте на ряд последовательных ячеек (ступеней). На каждой ступени фазы вступают в контакт, после чего они разделяются и передаются на соседние ступени (в подавляющем большинстве — противотоком). Типичными примерами таких аппаратов служат тарельчатые колонны, смесительно-отстойные экстракторы. [c.215]

    Ректификация представляет собой процесс разделения смеси компонентов летучих жидкостей с различной упругостью паров. Для проведения этого процесса наряду с тарельчатыми колоннами используются аппараты колонного типа, заполненные насадкой. Наиболее распространена керамическая насадка — полые цилиндры, в насадочных колоннах пар движется снизу вверх навстречу стекающей жидкости (противотоком), при этом легколетучие компоненты имеют повышенную концентрацию в паре, а труднолетучие (тяжелые) — в жидкости. Потоки пара и жидкости находятся Б постоянном взаимодействии на поверхности насадки. Разность концентраций фаз обеспечивает условия, необходимые для диффузионного переноса вещества в системе контактирующих сред. Процесс переноса вещества, или массопередача, между фазами идет непрерывно, в результате непрерывно меняются концентрации потоков жидкости и пара вдоль всей поверхности контакта фаз (по высоте колонны). Таким образом, в насадочной колонне протекает противоточный дифференциальный процесс массообмена между фазами (пар — жидкость) по высоте аппарата. [c.251]

    В полочном пенном аппарате при определенных условиях на поверхности барботи-руемого слоя возникает пена. В циклоннопенных аппаратах поток газов при тангенциальном подводе раскручивается по спирали (рис. 4.2.15). Такой способ взаимодействия газов с жидкостью обеспечивает ббльшую непрерывно обновляемую поверхность контакта фаз. Циклонно-пенные аппараты весьма эффективны как газоохладители, так как позволяют снижать температуру газа до температуры уходящей из аппарата воды при начальной температуре газа до 400 °С. При этом одновременно происходит хорошая очистка газа от пыли. [c.407]


    По схеме организации контакта и движения потоков в рабочих элементах ректификационные аппараты можно разделить на две большие группы колонн 1) с непрерывным (по их высоте или подлине пути каждой из фаз) контактом между жидкостью и паром (см. рис. 4—6) 2) со ступенчатой организацией контакта, в которых фазы взаимодействуют на некоторых отделенных одна от другой ступенях—тарелках, после каждой из которых потоки пара и жидкости разделяются и поступают первый — на вышележащую, а второй — на нижележащую ступени. [c.373]

    Использование НС предопределяет проведение процессов в периодическом режиме по твердому материалу ТМ). Это вполне устраивает технологов, когда процесс реализуется без ввода твердого материала в аппарат и его вывода из аппарата каталитические процессы (катализатор иногда может неделями и месяцами работать без замены) ТМ служит инертным контактом (его не надо заменять) и др. Но при непосредственном участии ТМ в технологическом процессе часто требуется его замена — периодическая (с операциями зафузки и выфузки ТМ — это сопровождается непроизводительными затратами времени) или непрерывная, с постоянным вводом и выводом. Такой системой, сходной гидродинамически с НС, является движущийся слой ДС), перемещающийся в аппарате под действием собственного веса. При этом среда (газ, жидкость) движется противотоком или прямотоком по отнощению к нисходащему потоку твердого материала. Закономерности ДС рассматривают среди внешних, а не смешанных задач гидродинамики, поскольку основным здесь является взаимодействие среды с твердым материалом (большие поверхности контакта), а не со стенками аппарата. [c.222]

    При работе в колонне уголь непрерывно контактирует со свежим раствором, т.е. с исходной сточной водой. Концентрация загрязнений в стоке, находящемся в контакте с данным слоем угля в колонне, изменяется очень медленно. При контактной обработке (т.е. при использовании порошковых углей) концентрация загрязнений падает значительно быстрее по мере протекания процесса сорбции и эффективность угля по отношению к данным загрязнениям снижается. Трудности регенерации порошковых углей обусловливают преимущественный выбор гранулированных углей для адсорбционной очистки как городских и промышленных сточных вод [18, 53-58], так и нефтесодержащих стоков [43,59,60]. Типичные адсорбционные системы показаны на рис.4 [12, 46]. При проектировании системы адсорбционной очистки используется так называемое "время контакта", определяемое скоростью потока и длиной слоя сорбента. Это время, которое необходимо для снижения концентрации загрязнений в поступающей сточной воде до требуемого уровня, т.е. до "проскока" в очищенном стоке. Технологические параметры работы адсорбционных аппаратов ("длина" работающего слоя адсорбента, качество очищенной воды, продолжительность защитного действия угля) зависят от равновесных и кинетических характеристик адсорбционного взаимодействия сорбата и сорбента, зависящих в свою очередь от вышеперечисленных параметров качества угля и сточной воды, а также от гидродинамического режима в адсорбционном аппарате [б1,б2]. В настоящее время в США более 20 муниципалитетов про-ектируат, строят или эксплуатируют системы физико-химической обработки сточных вод [40]. [c.10]


Смотреть страницы где упоминается термин Аппараты с непрерывным контактом взаимодействующих потоков: [c.161]   
Смотреть главы в:

Структура потоков и эффективность колонных аппаратов химической промышленности -> Аппараты с непрерывным контактом взаимодействующих потоков




ПОИСК





Смотрите так же термины и статьи:

Аппараты потоков

Взаимодействующие потоки



© 2025 chem21.info Реклама на сайте