Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Схемы верхних частей колонн

    Мазут, нагретый в трубчатой змеевиковой печи, подают в зону испарения вакуумной колонны, а в нижнюю часть колонны и в змеевик печи вводят перегретый водяной пар. Паровое хорошение в нижней части колонны создается в результате отпаривающего эффекта водяного пара. Жидкостное орошение в верхней части колонны создается в результате конденсации и рециркуляции части дистиллятов. Выходящая с верха колонны смесь газов и водяных паров поступает в 4арометриче ский конденсатор, где за счет конденсации холодной водой водяных паров создается разрежение. Дополнительным оборудованием для" создания вакуума являются паровые струйные эжекторы, куда поступают несконденсировавшиеся газы из барометрического конденсатора. Схема процесса вакуумной перегонки мазута представлена на рис. 17. [c.34]


    На рис. VI.1 дана схема абсорбционной установки. Газ на абсорбцию подается газодувкой 1 в нижнюю часть колонны 2, где равномерно распределяется перед поступлением на контактный элемент (насадку или тарелки). Абсорбент из промежуточной емкости 9 насосом 10 подается в верхнюю часть колонны и равномерно распределяется по поперечному сечению абсорбера с помощью оросителя 4. В колонне осуществляется противоточ-ное взаимодействие газа и жидкости. Очищенный газ, пройдя брызгоотбойник 3, выходит из колонны. Абсорбент стекает через гидрозатвор в промежуточную емкость 13, откуда насосом 12 направляется на регенерацию в десорбер 7, после предварительного подогрева в теплообменнике-рекуператоре И. Исчерпывание поглощенного компонента из абсорбента производится в кубе 8, обогреваемом, как правило, насыщенным водяным па- [c.102]

    Технологическая схема абсорбционного разделения попутного газа с применением таких абсорбционно-отпарных колонн изображена на рис. 2. Исходный газ сжимают трехступенчатым компрессором / до 1,2—2 МПа в зависимости от содержания высших углеводородов. Затем он поступает в среднюю часть абсорбционно-от-парной колонны 2, орошаемой предварительно охлажденным абсорбентом (им обычно служат более тяжелые фракции бензина или лигроин). Верхняя часть колонны работает как абсорбер, причем из газа поглощаются полностью углеводороды С5 и высшие, около 95% бутанов и 70—80% пропана. Непоглощенные газы, состоящие в основном из метана и этана, можно использовать в качестве топливного газа или выделять из них метан, этан и пропан одним из рассмотренных выше методов. Процесс абсорбции [c.26]

    Технологическая схема получения метанола по мегоду I I приведена на рис. 8.2. Газ, получаемый риформингом лигроина, сжимается центробежным компрессором 1 до давления 5 МПа, нагревается в теплообменнике 2 отходящими газами до 250 °С и поступает в реактор синтеза 3. Синтез проводится при 250— 300 °С. Регулирование температуры в реакторе осуществляется с помощью струй холодного газа, подаваемого по всей высоте реактора через специальные распределители. Производительность одного реактора составляет около 500 т метанола в сутки. Продукты синтеза после теплообменника 2 охлаждаются в холодильнике 4. Сконденсированный метанол собирается в сепараторе 5, а непрореагировавшие газы смешиваются со свежим синтез-газом и вновь направляются в реактор синтеза. Метанол-сырец из сепаратора 5 подается на ректификационную колонну 6. В верхней части колонны 6 отгоняются легкокипящие примеси (главным образом диметиловый эфир и растворенные газы), кубовый остаток колонны подается на питание колонны 7. В качестве дистиллята колонны 7 отгоняется вода, сбоку отбирается товарный метанол. В виде кубового продукта из колонны отводится небольшое количество смеси высших спиртов. [c.251]


    Схемы верхних частей колонн [c.118]

    Схемы верхних частей колонн для выделения метана и этана, работающих при отрицательных температурах, отличаются от описанных выше. На рис. 29 приведена схема оборудования верхней части колонны для выделения этановой фракции. [c.121]

    Все колонны схемы I можно совместить в общем корпусе, причем отгонные части колонн монтируются отдельно. Тогда в верхнюю часть колонны должно подаваться орошение в количестве, достаточ- [c.223]

    Обычные или традиционные схемы регулирования одноколонных систем рен-тификации включают не связанные между собой элементы, описанные в предыдущем параграфе. Например, щироко распространена такая схема регулирования (рис. У1-24) давление регулируется изменением расхода газа из рефлюксной емкости, расход орошения стабилизирован, отбор дистиллята осуществляется по уровню жидкости в рефлюксной емкости, отбор остатка —по уровню жидкости в кипятильнике, температура жидкости на контрольной тарелке регулируется изменением расхода теплоносителя в кипятильник. Сравнение и анализ различных схем автоматизации простых ректификационных колонн показывает [18], что лучшие результаты по сравнению е приведенной на рнс. У1-24 схемой дает регулирование отбора дистиллята с коррекцией по температуре жидкости на контрольной тарелке верхней части колонны с регулированием подачи орошения с коррекцией по уровню в емкости дистиллята. В качестве управляющего сигнала, воздействую- [c.334]

    Балансовое количество рафината с низа колонны 2 направляется в верхнюю часть колонны 1, под нижнюю тарелку которой подается перегретый водяной пар. Пары из колонны 1 вводятся в нижнюю часть колонны 2, а рафинат с низа колонны 1 направляется насосом 3 в трубчатый парогенератор (на схеме не показан), служащий для производства водяного пара, затем в холодильник и в резервуар целевого продукта. Водяной пар, получаемый в парогенераторе, подается в низ колонны 1 (при необходимости пар пропускается через пароперегреватели печи). [c.77]

    При проектировании обвязки верхней части колонн используются схемы полной, неполной и парциальной конденсации паров. В качестве конденсаторов применяют аппараты воздушного охлаждения или кожухотрубчатые холодильники, а для сбора дистиллята — горизонтальные или вертикальные емкости и сепараторы. Для поддержания в колоннах постоянного давления служат схемы регулирования 1) с установкой регулирующего клапана на основном потоке 2) изменением угла поворота лопастей вентилятора ABO 3) изменением числа оборотов электродвигателя вентилятора ABO 4) изменением расхода оборотной воды в кожухотрубчатый конденсатор-холодильник. При неполной конденсации обычно применяются схемы регулирования давления сбросом неконденсирую-щихся газов из емкости орошения в топливную сеть. [c.86]

    Технологическая схема процесса приведена на рис. 6.14. В реактор 7 подают катализаторный раствор, уксусную кислоту, этилен, кислород и циркуляционный газ [концентрация кислорода в исходном газе около 5,5% (об.)]. Реакция осуществляется при 130 °С и давлении 3 МПа. Выходящая из реактора смесь непрореагировавшего этилена, кислорода, продуктов реакции и уксусной кислоты после охлаждения в холодильнике 3 и дросселирования поступает в газосепаратор 4. Несконденсировавшиеся газы после поглощения двуокиси углерода раствором соды в скруббере 5 (с последующей десорбцией Og в отпарной колонне 6) возвращаются в реактор J. Для удаления инертных компонентов часть газа периодически выводится иа системы. Конденсат из газосепаратора 4 поступает в колонну 7, в которой отгоняются продукты реакции, включая образовавшуюся воду. Из куба этой колонны отбирается непрореагировавшая уксусная кислота, которая затем возвращается в реактор. В колонне 8 отгоняются низко-кипящие компоненты, которые для выделения ацетальдегида поступают в абсорбер 12. Поглощенный водой ацетальдегид выделяется из водного раствора ректификацией в колонне 13. Отбираемый из куба колонны 8 продукт, состоящий из винилацетата, воды и высококипящих компонентов, разделяется в отстойнике 9 на два слоя. Водный слой после извлечения следов винилацетата направляют в канализацию. Органический слой из отстойника 9 направляют для удаления воды в колонну 10, из которой смесь продуктов поступает в ректификационную колонну И, где отгоняется чистый винилацетат. Из куба колонны И выводятся высококипящие примеси. Пары воды с примесью винилацетата из верхней части колонны 10 возвращаются в колонну 8. [c.193]

    Авторы работы [13] отмечают, что потери зависят не только от температуры и давления в верхней части колонны, но и от числа тарелок в зоне подачи циркуляционного орошения. Чем больше последних, тем выше температура на тарелке вывода масляного дистиллята, что препятствует удержанию в жидком состоянии наиболее летучих головных фракций и приводит к увеличению потерь. Так, при постоянных температуре 120 X и давлении наверху для схемы с одной тарелкой температура отвода масляной фракции 120°С, с двумя тарелками — 209 °С и с тремя — 224 °С, а потери составляют 100, 140 и 170% соответственно. Однако с уменьшением числа тарелок резко возрастает расход циркулирующей жидкости на орошение. [c.74]


    Как видно из рисунка, деасфальтизационная колонна работает не по полной схеме. В верхнюю часть колонны (ступень ПГ) продуктовые потоки с внешней стороны не подаются. На П1 ступени разделения за счет сдвига фазового равновесия (температура повышается до 82 С) из пропано-масляной фазы [c.230]

    Принципиальная схема процесса представлена на рис. 4.4. Сырье нагревается потоком отходящего экстракта в теплообменнике 2 и вводится в верхнюю часть абсорбера 4. В нижнюю часть абсорбера подается поток паров азеотропной смеси воды и фенола. Сырье абсорбирует нары фенола и опускается в низ аппарата, а пары воды выводятся через верх, конденсируются в аппарате 5 и отводятся в виде конденсата в систему оборотного водоснабжения. Сырье охлаждается в холодильниках 5, 7 и вводится в нижнюю часть экстракционной колонны 8. В верхнюю часть колонны из емкости 20 подается сухой фенол, который предварительно нагревается в аппаратах 10 и 9. В нижнюю часть колонны из емкости 14 подается фенольная вода. [c.247]

    Принципиальная технологическая схема азеотропной очистки промыШленных сточных вод представлена на рис. 6.3. Сточные воды поступают в емкость 1, куда из отстойника-сепаратора 2 также подается насыщенный водный раствор отгоняемого органического вещества. Смесь насосом 8 через теплообменники 4 и 5 подается в отгонную колонну 6 с насадкой. В теплообменниках 4 и 5 сточная вода нагревается очищенной водой и отводимой из колонны 6 смесью паров. В нижнюю часть колонны 6 подается острый пар. Смесь паров воды и отгоняемого вещества из верхней части колонны 6 поступает последовательно в теплообменники-  [c.340]

    Пропан-пентановый абсорбционный холодильный цикл. На рис. 125 показана схема трехступенчатого пропан-пентанового холодильного цикла. Этот цикл не применяется для общего сжижения газа, хотя он и осуществляется в криогенной области. Холод в данном случае получается за счет кипения пропана в низу колонны 1. В верхней части колонны пары пропана поглощаются охлажденным пентаном. Жидкая смесь пропана и пентана перекачивается в колонну 2 и затем в колонну 3, абсорбируя пары пропана в каждой из них. В колонне 5 происходит разделение смеси на пропан и пентан. [c.202]

    Принципиальная технологическая схема установки комплексной подготовки нефти представлена на рис. 29. Нефть тремя самостоятельными потоками поступает в промывочную колонну 1, где она за счет тепла воды, сбрасываемой с деэмульсаторов и отстойников, нагревается до 35—40 °С и освобождается от включений свободной воды и механических примесей. Затем нефть опускается в нижнюю часть колонны. В верхнюю ее часть поступает соленая вода, подогретая до 65—75°С. Благодаря разности плотностей нефть поднимается вверх через слой опускающейся соленой воды, при этом за счет тепла воды она подогревается до указанной температуры, освобождается от крупнодисперсной воды и механических примесей, если они имеются. Нефть из верхней части колонны, где поддерживается ее постоянный уровень, поступает на прием сырьевых насосов 2, которыми подается через теплообменники 3 и подогреватели [c.93]

    Для случаев, когда необходимо строго обеспечивать какой-либо параметр качества верхнего продукта колонны, применяются схемы регулирования подачи орошения в зависимости от температуры или собственно параметра качества (вязкости, фракционного состава, плотности и т. д.) на какой-либо из тарелок верхней части колонны (так называемой контрольной тарелке). Если подача теплоты в колонну регулируется в зависимости от температуры низа колонны, при обвязке верхней части предусматривается стабилизация подачи орошения. [c.87]

    Гипрокаучук разработал схему механизации загрузки насадочных колец в ректификационные колонны путем применения стационарной укосины, специального бункера и лебедки (рис. 55). Укосина 1 постоянно устанавливается в верхней части колонны, для удобства подачи насадочных колец в люки колонны предусмотрены специальные лотки 6. Бункер 5 имеет боковое отверстие для выгрузки колец и механизм для открывания крышки. [c.242]

    Технологическая схема процесса на отдельной установке селективного гидрокрекинга (раздельная схема) приведена на рис. 5.5. Сырье (прямогонная бензиновая фракция, катализат риформинга, бензин-рафинат) насосом 1 подается на смешение с водородсодержащим газом от компрессора 2. В качестве источника водорода может быть использован любой водородсодержащий газ с концентрацией водорода выше 80% (мол.), в частности избыточный газ риформинга. Смесь сырья и водородсодержащего газа нагревается в теплообменнике 3, а затем в печи 4 до температуры реакции. Из печи газосырьевая смесь направляется в реактор 5. Газопродуктовая смесь из реактора поступает в теплообменник 3, далее охлаждается в холодильнике 6. В сепараторе 7 осуществляется разделение газопродуктовой смеси на водородсодержащий газ и нестабильный катализат. Выделенный водородсодержащий газ компрессором 2 возвращается в систему и частично отдувается для поддержания заданного парциального давления водорода. Возможно осуществление варианта работы на проток , прн котором весь выделившийся водородсодержащий газ отдувается, а давление в реакторе поддерживается только за счет подачи свежего водородсодержащего газа. Нестабильный катализат после нагрева в теплообменнике 8 поступает в стабилизационную колонну 9 для выделения растворенных углеводородов. Из верхней части колонны 9 [c.147]

    Пусть структура схемы разделения задана и задача состоит в выборе структуры ТС и одновременной оптимизации всей схемы в целом. Описанная выше процедура полностью применима и в этой задаче. Включим в совокупность 5 горячих потоков все потоки из верхних частей колонн, а возвращаемые части потоков, отобранные из их нижней частей,— в совокупность 5 холодных потоков. Если между какими-либо холодным и горячим потоками теплообмен невозможен, это можно учесть при решении задачи синтеза ТС. Закрепим переменные (VI, 55), (VI, 56), (VI, 73), (VI, 74) на входе и выходе ТС и проведем синтез ТС, используя один из описанных методов с учетом ограничений (VI, 75). После того как структура ТС будет найдена, проведем оптимизацию всей схемы, используя в качестве управляющих переменных ректификационных колонн флег-мовые числа, числа тарелок и т. д., а теплообменных систем — числа, диаметры и длины трубок. В результате получим новые значения всех или некоторых переменных (VI,55), (VI,56), [c.227]

    Разделительный аппарат одинарной ректификации. На рис. 19-19 показана схема простого цикла с дросселированием, в котором применен разделительный аппарат одинарной ректификации. Аппарат представляет собой обычную ректификационную колонну, куб которой обогревается сжатым воздухом, а исходная смесь подается на верх колонны. Сжатый и охлажденный в теплообменнике 1 воздух проходит по змеевику 2 и, отдавая тепло кипящему в кубе жидкому кислороду, частично конденсируется. Затем воздух дросселируется в вентиле 3 до абсолютного давления 1,2—1,3 ат и подается на верх колонны 4. В результате ректификации в кубе собирается ВК (кислород), из верхней части колонны отводится НК (азот). [c.690]

Рис. 28. Схема верхней части ректификационной колонны Рис. 28. Схема верхней части ректификационной колонны
    При нагреве сырья выше температуры полного однократного испарения произойдет перегрев паров. Как и в предыдущем случае, потоки будут характеризоваться схемой, приведенной на рис. IV-26, б. Отличие будет состоять в том, что тепло перегрева паров должно быть снято в верхней части колонны при их контактировании с более холодной флегмой, стекающей по тарелкам концентрационной части колонны. Очевидно, чтобы не допустить чрезмерного повышения температуры флегмы, стекающей с нижней тарелки концентрационной части колонны, необходимо увеличить массу этой флегмы или понизить температуру флегмы в вышележащих сечениях концентрационной части колонны. [c.153]

    На рис. У-6 приведена схема установки для экстрактивной ректификации. Разделяющий агент подается в верхнюю часть колонны 1, из которой низкокипящие компоненты отбираются в виде ректификата. Кубовый продукт — смесь высококипящих компонентов и разделяющего агента направляется в колонну 3, из которой высококипящие компоненты отбираются в виде ректификата. Разделяющий агент, отбираемый в виде кубового продукта, возвращается насосом 5 в колонну 1. [c.189]

    В последние годы получил применение способ непрерывной адсорбции, названный гиперсорбцией. На рис. 122 представлена схема гиперсорбера. Особенность установки заключается в том, что в ней непрерывно циркулирует уголь. В верхней части колонны имеется холодильник охлаждаемый водой, куда при помощи центробежного вентилятора попадает уголь после десорбции. Холодильник состоит из системы труб, по которым движется уголь. Под холодильником находится зона адсорбции А, в нижнюю часть которой вво- [c.300]

    На рис.7.9 представлена технологическая схема установки каталитического крекинга с кипящим слоем катализатора 1—А/1—М. Крекируемое сырье через теплообменники 1 подается в печь 2. Нагретое сырье смешивается с рециркулятом (частью тяжелой фракции) и по катализаторопроводу поступает в реактор крекинга 3. В нижнюю отпарную зону реактора вводится водяной пар для отдувки катализатора. Пары продуктов реакции и водяной пар при температуре 450°С из верхней части реактора 3 поступают в нижнюю часть ректификационной колонны 4. Пары бензина и водяной пар отбираются с верхней части колонны, проходят холодильник-конденсатор 5 и поступают в сепаратор 6, в котором разделяются на водяной слой, бензиновый слой и газ. Газ компрессируется и подается на газо-фракционирование, а бензин поступает на ректификацию. Часть бензина отбирается на орошение колонны. [c.138]

    Принципиальная схема экстрактивной перегонки приведена на рис. 2.6. Сырьевой поток, содержащий смесь ароматического углеводорода с парафиновыми и нафтеновыми, подают примерно в середину колонны 2, а растворитель — в верхнюю ее часть — между верхом и тарелкой подачи сырья. Растворитель обладает меньшей летучестью, чем углеводороды сырья, он течет с верха и выводится с низа колонны. Секцию колонны между точкой подачи сырья и кипятильником используют для отпаривания неароматических углеводородов от ароматического углеводорода и растворителя. Верхняя часть колонны орошается неароматическими углеводородами. В этой зоне неароматические углеводороды отделяются от растворителя. [c.43]

    Выделяющаяся при стабилизации из верхней части колонны смесь этана, пропана и бутанов разделяется перегонкой под давлением на отдельные составные части пропан, к-бутан и изобутан. Процесс ведут прп таком соотношении давлонп , чтобы при данной температуре в верхней части колонны часть продуктов всегда конденсирова.яась для орошения. Схема абсорбционной установки показана па рис. 3. Колонна 1, из которой еще выделяются небольшие количества метана и этана, работает примерно при 17,5 ат и имеет около 30 тарелок. В колонне 2 углеводороды Сз и С4 отделяются от пентанов и более высококипящих углеводородов. Колонна работает примерно при 9 ат. Температура верха ее 78°, низа 120—140 . В колонне 3 разделяются углеводороды С3 и С4. Пропан уходит через верх колонны, а углеводороды С4 из низа колонны 8 переходят в колонну 4, где разделяются на изо- и н-бутаны. Колонна 3 работает примерно при 17,5 ат и имеет 30 тарелок. Температура верха колонны около 60°, низа 115°. Колонна 4 имеет 50 тарелок и работает при 8,7 ат температура верха 70°, низа 85°. [c.14]

    Продукты реакции отводятся из верхней части колонны, а снизу поступают свежий бензол и циркулирующий бепзол, содержащий еще ди- и полиэтилбензол. Выходящие из верха колонны продукты реакции поступают в сепаратор. Здесь отделяются тяжелые соединения хлористого алюминия, которые возвращаются в реакционную колонну. Алкилат промывают водой, щелочью и снопа водой и подают на перегонку, процесс которой ясен из схемы. Остаток из последней колонны собирают, еще раз разгоняют на периодически действующей установке. Выделенные в процессе перегонки остатки нолиэтилбсшзола возвращаются на установку для алкилирования. [c.229]

    Е5 зависимости от условий переработки газа может быть выбрана схема ГФУ с высоким (до б МПа) или низким (1 — 1,5 МПа) давлением. Высокое давление позволяет для конден-сацми паров в верхней части колонн использовать в качестве хладагентов воздух и воду, при низких давлениях требуется аммиачное или пропановое охлаждение. [c.213]

    На рис. 65 представлеиа принципиальная технологическая одноколонная схема переработки конденсата с получением бензина и дизельного топлива. Стабильный конденсат после подогрева в рекуперативных теплообменниках 1—3 вводится в середину ректификационной колонны 4, в которой происходит разделение конденсата на две фракции бензиновую (верхний продукт) и дизельную (нижний продукт). Теплота подводится к колонне циркуляцией кубового продукта через печь 8, часть этого потока используется в качестве теплоносителя в теплообменнике 3. Для конденсации паров в верхней части колонны используется рекуперативный теплообменник 1 и воздушный холодильник 5. [c.214]

    Сырой газ, сжатый до 1,3— 1,7 МПа, последовательно проходит через маслоотделитель (на схеме не указан), холодильник 1 и сепаратор 2, где освобождается от выпавшего компреосионного бензина и поступает под нижнюю тарелку абсорбера 3. На верхнюю тарелку абсорбера подают поглотительное масло (тощий абсорбент). При прохождении через тарелки газ отбензинивается и из верхней части колонны по шлемовой трубе отводится в сепараторы отбензиненного газа 4, где осаждаются увлеченные потоком газа капли абсорбента. Очищенный от масла газ из сепаратора направляется через регулятор противодавления на распределительный пункт. [c.141]

    Принципиальная схема устройства экспериментального стенда приведена на рис. 36. Гидрофобная жидкость из сборника 3 и термостата 2 шестеренчатым насосом 1 через буферную емкость 9, дроссель-вентиль 8 и сопло подается в барботажный аппарат 6. Последний выполнен из органического стекла. Его размеры в плане составляют 300 X 300 мм, высота равна 1600 мм.Для исключения попадания воды в линию гидрофобной жидкости на сопло установлен от-секатель 7. Капли гидрофобной жидкости собираются в верхней части аппарата и оттуда перетекают в сборник 3. Термостат 2 служит для стабилизации температуры гидрофобной жидкости. В качестве термостатируюи1ей среды используется вода. Фотографирование производится в верхней части колонны, где уже произошла стабилизация размеров и формы капель. [c.67]

    Технологическая схема одного из вариантов разделения водно-кислотной фракции изображена на рис. 5.2. Сырье подается на колонну азеотропной осушки К-1. В верхней части колонны циркулирует диизопропиловый эфир, количество которого обеспечивает полную отгонку воды (в виде гетероазеотропа вода — эфир). Погон расслаивается в отстойнике 0-1, нижний водный слой из которого направляется на отпарку эфира в колонну К-2, а верхний возвращается в колонну в виде флегмы. Из куба колонны К-2 выводится вода. Кубовый продукт колонны К-1 поступает на колонну выделения муравьиной кислоты гетероазеотропной ректификаций с толуолом. Аналогично блоку К-1—К-3 для доисчерпывания толуола служит колонна К-4, из куба которой отбирается муравьиная кислота. [c.278]

    Принципиальная схема установки экстракции фенола растворителем из сточных вод приведена на рис. 6.1. Предварительно очищенная от смол, масел и взвешенных веществ вода поступает через холодильник 1 в оросительную колонну 2, где поглощается экстрагент, отогнанный вместе с газами и парами в дистилля-ционной колонне 7. В колонне 2 фенольная вода нагревается до температуры 30— 35 С и подается в верхнюю часть противоточного экстрактора 3, в который снизу из сборника 10 подается растворитель. Обесфеноленная вода направляется в верхнюю часть колонны 7 для отгонки растворителя. Выходящий из экстрактора 3 обогащенный фенолами растворитель регенерируется с применением вакуума. Фенолы остаются в кубовом остатке и периодически удаляются из колонны 8. [c.338]

    Получение диметилвинилкарбинола. В 1969—1972 гг. в СССР был разработан и испытан в полупромышленном масштабе метод получения диметилвинилкарбинола — ценного сырья для производства витаминов А и Е — из промежуточных продуктов синтеза изопрена из изобутилена и формальдегида (см. раздел 2.1). Технологическая схема процесса представлена на рис. 3.17. Водный раствор изобутенилкарбинола, выделенный азеотропной ректификацией с водой из фракции возвратного 4,4-диметил-1,3-диоксана. подается в куб реакционно-отгонной колонны 1, куда загружен катализатор (серная или щавелевая кислота). В кубе поддерживается кипение реакционной смеси (температура в парах 87—88 °С). Из верхней части колонны 1 непрерывно отбирается смесь водного азеотропа диметилвинилкарбинола н изопрена с примесью непревращен-ного изобутенилкарбинола. Для обеспечения полного расслаивания дистиллята и повышения степени осушки органической фазы в линию отбираемых продуктов подается дополнительное количество изопрена, отгоняемого в колонне 3. В отстойнике 2 смесь расслаивается. Нижний водный слой возвращают в колонну 1 в виде флегмы. Органическая фаза поступает в систему ректификационных колонн [c.97]

    Схема промышленной установки аросольван показана на рис. 2.21 [711. Растворитель подают в верхнюю часть колонны экстракции 2 и в виде экстрактной фазы, содержащей смешанный [c.63]

    В теории ректификации известно использование схемы фракционированйя нефти и нефтяных фракций с многопоточным питанием исходной смесью. Для оптимизации работы НСУ проведен расчетный анализ стабилизационной колонны с двухпоточным питанием нестабильной нефтью. В технологической схеме стабилизации нефти часть нестабильной нефти с температурой обессоливания и обезвоживания после электродегидратора, минуя нагревательную печь, подается как орошение в концентрационную чааь аабилизационной колонны. Проведенными исследованиями показано, что при использовании двухпоточного питания с подачей в верхнюю часть колонны холодной нефти уменьшается нагрузка на конденсаторы-холодильники. Для типовых НСУ имеется максимально допустимый расход верхнего холодного потока в пределах 10% на исходную нестабильную нефть. Использование схемы с двухпоточным питанием позволяет снизить энергетические затраты на стабилизацию нефти за счет уменьшения тепловой нагрузки печи на 6,7...10,0%, улучшить качество ШФЛУ, уменьшить массовое содержание высококипящих компонентов 6- в газе стабилизации. [c.49]

    На рис, 313 представлена схема типовой установки стабилизации конденсата с ректификацией. Частично выветренный нестабильный конденсат, поступающий с установки НТС, дросселируется и поступает в сепаратор 1, Отсепарированная жидкость разделяется на два потока один направляется в рекуперативный теплообменник 2, нагревается и поступает в абсорбционно-отпарную колонну (АОК) 3 в качестве питания другой - без нагрева в качестве холодного орошения - поступает в верхную часть АОК, В АОК поддерживается давление 1,9-2,5 МПа, температура в верхней части 15-20 °С, в нижней -170-180 °С, Верхним продуктом АОК является фракция, состоящая, в основном, из метана и этана (III), кубовым продуктом -дезтанизированный конденсат. Обычно газ сепарации обьединяют с верхним продуктом АОК и после дожатия направляют в магистральный газопровод. Дезтанизированный конденсат из АОК направляется в стабилизатор 5, работающий по схеме полной ректификационной колонны. При этом из верхней части колонны отбирают пропан-бутановую фракцию (ПФБ) либо широкую фракцию легких углеводородов (ШФЛУ) IV, а из нижней части колонны отводят стабильный конденсат II. Давление в стабилизаторе составляет 1-1,6 МПа, В качестве кипятильников колонн используют огневые печи. [c.52]


Смотреть страницы где упоминается термин Схемы верхних частей колонн: [c.34]    [c.78]    [c.51]    [c.278]    [c.261]    [c.27]    [c.70]    [c.85]    [c.86]    [c.126]   
Смотреть главы в:

Технология разделения углеводородных газов -> Схемы верхних частей колонн




ПОИСК





Смотрите так же термины и статьи:

Колонны верхние



© 2025 chem21.info Реклама на сайте