Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Понятие о моделировании процессов и аппаратов

    ПОНЯТИЕ О МОДЕЛИРОВАНИИ ПРОЦЕССОВ И АППАРАТОВ [c.23]

    Прямоточное экстрагирование является непрерывным и установившимся процессом, при котором концентрация извлекаемого компонента одинакова в каждой точке аппарата и зависит только от времени. Таким образом, если использовать принятые при моделировании процессов понятия о структуре потоков в аппаратах, то прямоточное экстрагирование можно описать моделью полного вытеснения. Эта модель идеализирована, так как на практике полное вытеснение жидкости никогда не реализуется. [c.124]


    Ядром математического моделирования является понятие модели — математически формализованного представления знаний об объекте (математического описания), снабженного алгоритмом решения и реализованного в виде программы на некотором алгоритмическом языке. Важным является то, что, понимая явление (процесс), исследователь имеет возможность сконцентрировать внимание на доминирующих факторах явления (процесса), т. е. анализировать последнее как бы в чистом виде, исключая фоновые эффекты путем принятия соответствующих допущений. ...Может показаться, что чем ближе модель к действительности, тем точнее ее прогнозы и тем эффективнее, следовательно, управление. К сожалению, это не так. Реальный мир настолько обилен деталями, что, попытавшись построить математическую модель, очень близкую к действительности, мы очень скоро запутываемся в погоне за сложнейшими уравнениями, которые содержат неизвестные величины и неизвестные функции. Определение же этих функций ведет к еще более сложным уравнениям, с еще большим числом величин и функций — и так до бесконечности [Ц. Возможность описания объекта с необходимой точностью при сохранении качественного соответствия является замечательным свойством модели, позволяющим применять последнюю на различных (по степени детализации) уровнях исследования процесса (микро- и макроуровнях, на уровне отдельного аппарата и химического производства). [c.255]

    Условия экстремальной экономики (как уже было сказано выше) характеризуются степенью неопределенности и нестабильности в информационном обеспечении в процессе принятия решений. Одной из характерных черт является неопределенность спроса на сырьё и вероятностный характер спроса на готовую продукцию, неопределенность внешних факторов (в частности политики регулирования пошлин и косвенных налогов на некоторые виды производимой продукции и закупаемой продукции в виде сырья). В теории математического моделирования для отражения случайных процессов применяется аппарат стохастического программирования. В качестве примера берется постановка задачи в так называемой М-постановке, где происходит максимизация (или минимизация) математического ожидания целевой функции. Основные понятия теории вероятности были приведены ранее в главе 3, а сама модель непосредственно представлена в главе 4, при этом указано, что данная [c.37]

    Принципы и понятия математического моделирования в последнее время получили существенное развитие. Оно связано с интенсивным применением информационных технологий и вычислительной техники. Использование математических моделей при расчете процессов и аппаратов химической технологии дает возможность значительно сократить время от исследования процесса до его внедрения в промышленность. [c.3]


    Исходя именно из такого понятия системного подхода рассмотрим проблему моделирования полимеризационных процессов. Современная тенденция в моделировании химико-технологических процессов предполагает переход от отдельных реакторов к сложным схемам, составленным из множества аппаратов [18—20]. [c.7]

    Вместе с тем математический аппарат, используемый в большинстве случаев при моделировании микробиологических процессов, относится к типу уравнений движения и заимствован из области кинетики химических и биохимических (ферментативных) процессов. Это в принципе не вызывает возражений, так как именно кинетика огромного множества отдельных, но связанных в систему реакций определяет биологические процессы. Вместе с тем, используя для описания процесса, протекающего на популяционном уровне, математический аппарат, созданный для описания процессов, характерных для молекулярного уровня организации биосистемы, следует помнить о том, что в этом случае принципиально невозможно ожидать получения математической модели роста популяции, которая бы давала рациональное истолкование всей наблюдаемой специфики ее поведения. Безусловно останутся явления, особенно относящиеся к вопросу регуляции на популяционном уровне, которые затруднительно интерпретировать в понятиях молекулярного уровня. [c.19]

    Книга является пособием по курсу Моделирование химико-технологических процессов . Она состоит из трех частей. Первая часть книги знакомит с основными понятиями и определениями, а также со способами моделирования. Вторая часть посвящена кинетике и макрокинетике процессов, рассмотрению влияния на нее тепловых и диффузионных факторов и гидродинамике потоков в аппаратах. В третьей части изложены принципы построения различных моделей и вопросы оптимизации процессов химической технологии. [c.319]

    Постановка задачи о расчете и моделировании ионообменного реактора приводит к сложным математическим зависимостям, которые, как правило, являются трудноразрешимыми даже при использовании ЭВМ. Поэтому в настоящее время остается весьма актуальной задача по разработке таких инженерных методов расчета ионообменной аппаратуры, которые позволили бы получить надежные результаты при сравнительно малых затратах. Применяемые в настоящее время равновесные теории, использующие такие понятия, как теоретическая тарелка и высота единицы переноса, не отражают основных физико-химических особенностей процесса ионного обмена. В лучшем случае они демонстрируют лишь принципиальную возможность приближенного расчета ионообменных реакторов с использованием основных положений теории массообменных процессов. Между тем известно, что надежное математическое описание, анализ и расчет подобного рода процессов и аппаратов могут быть осуществлены только на основе неравновесных теорий, учитывающих кинетические закономерности процесса. [c.95]

    В /чебном пособии рассмотрены основные понятия и определения, принятые в моделировании химико-технологических процессов на ЭВМ. Приведены методы построения математических моделей. Рассмотрены типовые модели структуры потоков в аппаратах и математические описания некоторых химических, тепло-обменных и массообменных процессов. [c.2]

    При рассмотрении статики абсорбции даны сведения о равновесии некоторых конкретных систем. В главу Кинетика абсорбции включены краткий обзор различных моделей абсорбции и разделы, посвященные экспериментальному определению коэффициентов массопередачн и моделированию абсорберов. При расчете ступенчатых аппаратов автор отказался от применения понятия Теоретическая тарелка , как не отвечающего современному уровню знаний. Приведены расчеты абсорбции летучим поглотителем и абсорбции с выделением тепла по разработанному автором методу. Расчет десорбции рассмотрен на основе тепловой диаграммы равновесия. Кратко изложены вопросы применения электронно-счетных машин для расчета некоторых абсорбционных процессов. Введена глава, посвященная регулированию работы абсорбционных установок. При написании книги использована Международная система единиц (СИ). [c.8]

    Процесс выработки компромиссных решений, как правило, не обеспечивается одноразовым компьютерным моделированием. Часто необходимы дополнительные расчеты с добавлением и с вариацией условий и ограничений исследуемых задач. В результате формируются интегрированные показатели, которые необходимы для будуш,его переговорного процесса на всем протяжении выработки окончательного решения. Поскольку внешние атрибуты самого принятия водохозяйственных решений слабо влияют на особенности используемых математических моделей, следует разделить два понятия аппарат поддержки принятия решений (математические модели и компьютерные системы, подска-зываюш,ие ЛПР рациональный выбор при тех или иных упрош,аюш,их предположениях) и собственно принятие решений со стороны ЛПР. Логичность такого разделения следует из того, что нестабильность организационной и правовой системы управления водопользованием может значительно изменить процедуру принятия решений, но не аппарат их поддержки. Косвенным доказательством этого факта служит то, что в течение многих десятилетий, как в нашей стране, так и за рубежом создавались и успешно внедрялись почти идентичные модели управления крупными ВХС, хотя законодательные основы и организационные принципы управления природно-хозяйственными системами были различны. Например, задачи однокритериальной оптимизации интенсивно используются как в нашей стране, так и за рубежом при решении многих водно-ресурсных задач управления. Что касается имитационного моделирования, то эта методология практически не связана со спецификой системы управления водными ресурсами. Соответствующие математические модели не содержат целевого функционала [c.61]


    При статистическом моделировании рассматриваемого класса процессов химической технологии представляется целесообразным ввести понятие стационарного ансамбля флуктуаций , под которым понимается счетное множество элементарных объемов, частиц или зон аппарата, в которых протекают гидромеханические и физико-химические процессы, подчиняющиеся одним и тем же законам, по подверженные случайным воздействиям той или иной природы. Так, например, аппарат, в котором находится интенсивно перемешиваемая гетерогенная система, может рассматриваться с точки зрения статистической гидромеханики как ансамбль флуктуаций относительной скорости движения частиц твердой фазы и леидкости. Условие статистической стационарности ансамблей существенно упрощает статистическое моделирование и оправдывается во многих практически интересных случаях, так как средние интегральные характеристики аппаратов непрерывного действия не меняются во времени, а случайные процессы изменения во времени локальных значений основных параметров процессов обычно относятся к классу стационарных в широком смысле случайных процессов, [c.42]

    Подавляющее большинство методик, предложенных для моделирования массообменных процессов в двухфазных газопарожидкостных системах, используют либо понятие теоретической ступени разделения (т. е. такого контактного устройства, в котором достигается межфазное равновесие), либо понятие ступени разделения с заданной (нормализованной) эффективностью разделения. Объясняется, это, с одной стороны, значительной сложностью моделей, использующих кинетические характеристики процессов массо- и теплообмена, а с другой стороны, недостаточной изученностью кинетики процессов тепло- и массопереноса в контактных устройствах различного типа. Разумеется, моделирование без учета кинетики процесса также дает полезную информацию об объекте. На его основе можно сравнить различные схемы процесса и выбрать оптимальный вариант, определить основные параметры потоков на выходе моделируемого объекта. Однако сопоставить различные конструкции массообменных устройств, наметить пути интенсификации процесса, верно определить размеры аппарата и энергозатраты на проведение процесса можно только с учетом кинетических характеристик контактных устройств и связей эти характеристик с гидродинамическими и физико-химическими параметрами процесса. [c.154]


Смотреть страницы где упоминается термин Понятие о моделировании процессов и аппаратов: [c.5]    [c.295]   
Смотреть главы в:

Процессы и аппараты нефтегазопереработки -> Понятие о моделировании процессов и аппаратов




ПОИСК







© 2025 chem21.info Реклама на сайте