Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнийорганические соединения Получение и свойства

    Почти во всех учебниках рассмотрение каждого класса органических соединений начинается с перечисления методов их синтеза. Это нарушает логику изложения, поскольку включает материал, с которым учащийся еще не знаком. Так, например, при обсуждении алканов в самом начале обычно приводятся такие методы их получения, как действие воды на магний- органические соединения, электролиз солей карбоновых кислот, действие металлического натрия на алкилгалогениды. Вместе с тем соответствующий материал подробно обсуждается позднее при рассмотрении свойств магнийорганических соединений, солей карбоновых кислот и галогенпроизводных. Следовательно, в этом случае читателя ориентируют не на понимание, а на, запоминание. Если же рассмотрение какого-то класса соединений производится в середине или в конце курса, то выделение методов синтеза в специальный раздел снова будет нецелесообразным. Это объясняется тем, что с большей частью материала учащийся оказывается уже ознакомленным при описании свойств тех классов соединений, которые рассматривались ранее. Так, например, когда он приступает к изучению аминов, ему уже знакомы такие методы их получения, как алкилирование аммиака алкилгалогенидами, спиртами и эпоксидами, восстано- [c.11]


    Строение металлорганических соединений 935 27 2 Способы получения металлорганических соединений 938 27 3 Химические свойства магнийорганических соединений 940 27 4 Практическое значение металлорганических соединений 943 Задачи и упражнения 944 [c.12]

    Ввиду важности магнийорганических соединений их получение, физические свойства и структура описаны несколько подробнее. [c.95]

    Г. Получение и свойства магнийорганических соединений  [c.45]

    Штромейер [6] при изучении свойств металлоорганических соединений второй группы периодической системы выделил небольшие количества дифенилкадмия с целью физико-химических исследований, использовав для его получения магнийорганические соединения (выход 12%). [c.152]

    К многочисленным работам Н. Д. Зелинского периода 1901—1904 гг. в области магнийорганического синтеза, который тогда находился в начальной стадии своего развития, относятся весьма оригинальные исследования по получению и выяснению свойств соединений нафтенового или алициклического ряда. [c.46]

    Оказалось, что полученное из хлористого фенила магнийорганическое произ- во водное существует в виде двух типов соединений, резко отличающихся по своим свойствам—растворимого и нерастворимого. Состав этих продуктов очень близок к составу следующих двойных молекул  [c.301]

    Атомы других металлов после финской бани столь же активны. Так, магний, вырванный из привычного окружения атомов-собратьев, реагирует с бромистым пропилом при глубоком холоде и без всякого растворителя. При отогревании матрицы на ней остаются устойчивые кристаллы СдНуМдВг. Однако свойства магнийорганических соединений, полученных таким экзотическим способом, имеют мало общего со свойствами реактива Гриньяра. Когда на эту же матрицу с кристаллами сконденсировали ацетон, никакого присоединения по связи С = 0 не произошло, а ацетон вынужден вступить со второй молекулой в реакцию типа альдольной конденсации  [c.195]

    Этиловый спирт относится к тем немногим органическим соединениям, которые были хорошо известны п течение столетий. Представим себе, однако, что он до сих пор не известен тогда даже весь огромный объем сведений о свойствах других низших спиртов не позволил бы кому-либо предсказать а priori его воздействие (полезное или разрушительное — в зависимости от дозы ) на человеческий организм, не говоря уже о его роли в исторических событиях (таких, как, скажем, пивной путч D Мюнхене или революция 1917 г. в России). Нередко случается и так, что впервые полученные или даже хорошо известные соединения не привлекают внимания, пока, благодаря тому или иному случайному наблюдению, не становятся исключительно важными. Так, ни способность диэтилового эфира служить стабилизирующим растворителем для магнийорганических соединений, ни анестезируюшие свойства хлороформа, ни образование жидких кристаллов бензоатом холестерина, ни уникальный набор физических и химических свойств политетрафторэтилена (тефлона) не могли бьггь в свое время предсказаны только на основе анализа их структур [30]. Таким образом, остается невероятно трудной проблемой разработать общие принципы молекулярного дизайна новых структур, обеспечивающих вешеству заданный набор свойств. Тем не менее для определенных классов задач предсказание свойств на основании знания структуры соединения все же возможно. Такой рациональный подход, основанный на идеологии молекулярного дизайна, доказал свою дееспособность, что мы и постараемся продемонстрировать приводимыми в этом разделе примерами. [c.460]


    Это свойство объясняет рацемизацию, наблюдаемую при получении металлоорганических соединений из оптически активных галоидалкилов (см. стр. 372), например при образовании магнийорганического соединения из оптически активного 2-бромоктила (и)  [c.483]

    Свойства алкильных производных натрия и лития во многом сходны со свойствами магнийорганических соединений, но для производных щелочных металлов характерна большая реакционная способность. Как упоминалось выше, они очень чувствительны к кислороду воздуха и влаге и реагируют с простыми эфирами, алкилгалогенидами, соединениями с подвижным водородом, а также с кратными связями углерод — углерод, углерод — кислород, углерод — азот. При их присоединении к карбонильным группам восстановление и енолизация имеют гораздо меньшее значение, чем в случае магнийорганических соединений, что делает возможным синтез очень высоко разветвленных третичных спиртов. Триизопропилкарбинол может быть получен из диизопропилкетона и изопропиллития, но не с помощью соответствующего реактива Гриньяра. [c.324]

    Реакция Гриньяра. Одной из наиболее важных реакций алкил- и арилгалогенидов является взаимодействие их с магнием с образованием реактива Гриньяра. Методика получения, разработанная Гриньяром в 1900 г., состоит во взаимодействии галогенида с магнием в среде эфира [9]. Эфир координационно связывается с образующимся магнийорганическим соединением возникающий при этом эфират не только удаляет металлоорганическое соединение с поверхности металла, которая при этом корродировала, но и препятствует атаке металлоорганического соединения органическим галогенидом. В отсутствие эфира магнийорганнческое соединение реагирует с исходным галогенидом по типу реакции Вюрца. Электронодонорные свойства (основность) растворителя и органического галогенида определяют, в какой мере происходит такое сочетание. [c.550]

    В 20-х годах наряду с работами прикладного характера и дальнейшим использованием магнийорганических соединений для синтеза в СССР стали появляться работы теоретического характера. Н. В. Кондырев изучил свойства алкилмагнийгалогенидов как электролитов А. П. Терентьев показал, что реактив Гриньяра состоит из сольватных комплексов, содержащих два атома магния. В 30-х годах в работах А. Е. и Б. А. Арбузовых, А. Д. Петрова, А. П, Несмеянова с сотр. были решены некоторые вопросы строения промежуточных продуктов и механизма реакций магнийор-1 анического синтеза. Была доказана возможность гетеро- и гомолитиче-ских магнийорганических реакций в зависимости от природы растворителя открыты многие аномально протекающие реакции. П. П. Шорыгин и сотр. разработали метод получения хлористого фенилмагния без эфира в автоклаве при взаимодействии с окисью этилена был получен Р-фенилэтиловый спирт. Затем Л. И. Захаркин, О. Ю. Охлобыстин и Б. Н. Струнин разработали способ получения магнийорганических соединений вне растворителя, предложив этот способ для синтеза разнообразных элемеитоорганических соединений. [c.85]

    Интерес к органическим соединениям алюминия значительно возрос после 1940 г., когда Гросое и Мэвити опубликовали сооб-ш,ение по препаративному получению алюминийалкилов из алюминия и галогеналкила и переходу от одного типа алюминийалкилов к другому. Год опубликования этой работы можно считать периодом второго рождения химии алюминийалкилов. В течение 1940— 1950 гг.появляется ряд работ, которых опубликованы физико-химические свойства основных алюминийалкилов и начаты исследования по использованию этих продуктов. Исследователями была показана исключительная реакционная способность алюминийалкилов, в большинстве случаев превосходящая даже реакционную способность магнийорганических соединений. Но все же и в этот период применение алюминийалкилов в органическом и нефтехимическом синтезе было ограниченным. Однако появившиеся работы дали возможность К. А. Кочешкову и А. Н. Несмеянову уже в 1944 г. высказать предположение, что алюминийорганические соединения займут в синтетической органической методике свое собственное место . И это предположение блестяще подтвердилось. [c.9]

    Отделение теоретической и прикладной химии Заведующий G. R. Ramage Направление научных исследований кинетика реакций в аэродинамической трубе термометрическое титрование тонкослойная хроматография анализ кристаллической структуры неорганических веществ синтез и строение боргидридов и фторборатов получение пористого угля и окиси кремния адсорбция на различных окислах использование полифосфорной кислоты в синтезе меченые атомы в изучении ферроценов катализ на ионообмен ных смолах радиационная химия фторированных алифатиче ских углеводородов литий- и магнийорганические соединения реакции реактивов Гриньяра с азолактонами перегруппировка Клайзена реакция Канниццаро синтез /г-дибромбензола стирол, пентаэритрит и их производные реакции галоидирован ных ароматических аминов гетероциклические соединения синтез аминокислот и пептидов на основе пиридина, хинолина стероиды методы синтеза природных ксантонов способы полу чения ярких и прочных красителей фотохимия красителей полимеризация виниловых мономеров эмульсионная полимери зация хелатные инициаторы полимеризации облучение поли меров и их растворов свойства и методы испытания полимеров [c.269]


    Таким образом, по своим физическим свойствам оба хлорида весьма мало отличались друг от друга. Тем знаменательнее оказался результат превращения их через магнийорганическое соединение в соответствующие карбоновые кислоты хлорид А, полученный на холоду, превратился в левую борнилкарбоновую кислоту (I) с т. пл. 73—74°, тогда как хлорид Б, приготовленный при нагревании, дал кислоту (II) с правым вращением [c.195]

    Таким образом, запросы практики как внешний фактор явились определяюш,ей причиной появления работ советских химиков в области химии органических соединений тяжелых металлов и первым стимулом их интенсивного развития. Вместе с этим действовали и другие причины, присущие внутренней логике развития самой пауки — органической химии. Они состояли в том, что к тому времени был пакоплеп большой материал в области химии цинк- и магнийорганических соединепий, был завершен Шорыгиным комплекс работ по химии натрийорганических соединений, что исключительно расширило синтетические возможности органической химии и позволило по-новому оценить роль металлооргапических соединений. В то же время было очевидным еще совершенно недостаточное использование металлооргапических соединений тяжелых металлов, исследования которых обещали вскрыть богатство, таящееся в необыкновенном многообразии их, основанном на прочности их металлоуглеродной связи. Идея получения этих соединений, исследования их свойств и определение надлежащего места в химии напрашивалась стать первоочередной задачей. В особенности заманчивыми были органические производные элементов IV группы кремния, германия, олова и свинца, так как они естественно вызывали интерес к изучению аналогии их свойств со свойствами соответствующих соединений собственно углерода. Решению главным образом этих вопросов и были посвящены первые работы К. А. Кочешкова и его учеников, начавшиеся с 1928 г. Исключительный интерес вместе с тем представляли ртутноорганические соединения, устойчивость которых даже по отношению к сильным реагентам была поразительной, а это обещало дать исследователю большое количество новых веществ. По пути изучения этой важнейшей области были направлены первые шаги научной деятельности А. Н. Несмеянова. [c.157]


Смотреть страницы где упоминается термин Магнийорганические соединения Получение и свойства: [c.233]    [c.545]    [c.233]    [c.231]    [c.15]    [c.3]    [c.203]    [c.273]    [c.298]    [c.87]    [c.86]   
Смотреть главы в:

Основы органической химии. Ч.2 -> Магнийорганические соединения Получение и свойства

Основы органической химии. Ч.2 -> Магнийорганические соединения Получение и свойства




ПОИСК





Смотрите так же термины и статьи:

Получение пз соединений

получение и свойства



© 2025 chem21.info Реклама на сайте