Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргон см Гелий

    Под горючими газами обычно подразумевают смеси газообразных горючих веществ низкомолекулярных углеводородов (ал — канов и алкенов — J, водорода, окиси углерода и сероводорода, разбавленных негорючими газами, такими, как диоксид углерода, азот, аргон, гелий и пары воды. [c.155]

    Для получения струи плазмы в целях резки используется газоразрядное устройство, называемое плазмотроном, где рабочий газ (водород, азот, аргон, гелий или их смеси) превращается в плазму в дуговом разряде между электродами [ 36 ]. [c.117]


    Получение и очистка газов. Большинство измерений в электрохимии проводят в отсутствие кислорода воздуха, который является электрохимически активным. В связи с этим исследования выполняют в атмосфере инертных газов азота, аргона, гелия. В ряде систем возможно использование водорода, который, однако, может проявлять электрохимическую активность на некоторых электродах при анодных потенциалах, Эти газы выпускаются промышленностью разной степени очистки. Если содержание кислорода в газах не превышает 0,005 %. то для большинства исследований нет необходимости в дополнительной очистке газов от следов кислорода и их очищают лишь от органических примесей пропусканием через трубки, заполненные активированным углем. При большом содержании кислорода в газах возникает необходимость его удаления. [c.31]

    Современные схемы синтеза аммиака — циркуляционные, т. е. часть азотоводородной смеси непрерывно превращается в колонне синтеза в аммиак, который и выводится из установки. В циркуляционных газах растет содержание инертных примесей — аргона, гелия, криптона, ксенона, что снижает скорость реакции, а следовательно, и технико-экономические показатели процесса. Поэтому часть циркуляционных, так называемых продувочных газов непрерывно выводится из цикла. В современных установках синтеза аммиака оптимальным считается 11— 13%-е содержание инертных примесей в циркуляционных газах, при этом расход продувочных газов, например на установке производительностью 1500 т ЫНз/сут составляет до 10 000 м /ч. Таким образом, с продувочными газами из цикла выводится (на [c.271]

    Дзержинским филиалом ОКБА серийно изготавливается измеритель расхода газа ИРГ-ПО, действие которого основано на этом принципе. Прибор предназначен для измерения расхода азота (аргона), гелия и воздуха в диапазоне до 100 мл/мин. Основная погрешность измерения 1,5 %. Результат измерения расхода газа в мл/мин (приведенный к нормальным условиям) выводится на цифровой индикатор. Так как показания ИРГ-110 не зависят от давления в газовой линии, прибор может быть включен в любой участок газовой схемы. Подобные устройства позволяют не только измерять расход газа, но и оценивать стабильность потока газа или динамику его изменения (например, при работе в условиях программирования расхода в колонке). [c.17]

    Термотехнологические процессы с химически активными исходными материалами для исключения их окисления осуществляются в специальной контролируемой инертной газовой среде или в вакууме. Роль защитной газовой среды в основном выполняют нейтральные газы (аргон, гелий, азот или их смеси). Применяемые в технике нейтральные газы содержат некоторое количество кислорода, азота, водорода и других примесей. Так, даже наиболее чистый аргон марки А содержит 0,01% примесей, и поэтому наилучшую защиту обеспечивает вакуум. [c.78]


    Увеличение содержания кислорода в смеси горючее — окислитель, а также полная замена воздуха кислородом расширяет область воспламенения. Это обусловлено в основном возрастанием верхнего предела воспламенения. При введении в смесь инертных паров и газов (азота, аргона, гелия, диоксида углерода, водяного пара) область воспламенения сужается, нижний предел практически не изменяется. [c.195]

    Первые две реакции происходят в разрядной камере, остальные— в ионизационной. В качестве газа-носителя рекомендуются аргон, гелий или азот. [c.44]

    Этерификации Органические кислоты Сложные эфиры — 300 Качественный анализ кислот Азот, аргон гелий [c.177]

    Азот, аргон, гелий [c.178]

    Необходимая температура в реакторе поддерживается за счет теплоты самой реакции. Процесс восстановления осуществляется в атмосфере инертного газа (аргон, гелий) нли в вакууме. Аналогично титану получают цирконий и гафний. [c.365]

    Элементы Аргон Гелий [c.73]

    Адсорбенты и носители называют неподвижной твердой фазой. Для перемещения разделяемых веществ вдоль колонки применяют газ-носитель (подвижная фаза) — азот, аргон, гелий, водород, двуокись углерода и др. Газ-носитель должен быть инертен по отношению к разделяемым веществам и к адсорбенту. [c.37]

    Плазменный метод нанесения состоит в том, что порошковый материал нагревается в потоке плазмы, имеющей температуру до 8000 °С, и, расплавляясь, с большой скоростью наносится на обрабатываемую поверхность. Плазму получают при пропускании инертного газа (аргона, гелия, азота) через [c.220]

    Для устойчивой работы детектора необходимо прежде всего обеспечить постоянную скорость образования свободных электронов в ионизационной камере, что достигается помещением в нее радиоактивного источника В качестве газа-носителя используются азот, аргон, гелий и другие электронодонорные газы, способные ионизироваться под воздействием радиации с освобождением электрона  [c.61]

    Аналогичное вакуумное действие оказывает атмосфера инертного газа в аргоне, гелии, азоте парциальное давление кислорода ничтожно мало и соответствует высокому вакууму. [c.167]

    Газ-носитель. В качестве газа-носителя в основном применяют аргон, гелий, азот и водород. Выбор газа обычно [c.142]

    Явление адсорбции обратимо. Увеличение температуры сорбента и газа, снижение давления газа, введение в систему малоактивного газа (водорода, аргона, гелия, азота, двуокиси углерода, воздуха) — все это способствует уменьшению концентрации хорошо адсорбирующегося компонента газа на поверхности адсорбента, т. е. порождает десорбцию. Многократное осуществление обратимого процесса сорбция — десорбция в одном аппарате и позволяет проводить разделение газовых смесей на отдельные компоненты даже в тех случаях, когда они близки по своим химическим и физическим свойствам. [c.46]

    В этой работе для теплопроводности приводятся данные от 100 до 600° К, а для азота и углекислого газа — до 1 200° К. При этом отмечается следующий разброс экспериментальных точек в процентах для воздуха — 4% азота —5% углекислого газа—10% кислорода, аргона, гелия и окиси углерода — 2%.  [c.147]

    Как видно из табл. 5-1, согласие между экспериментальными значениями теплопроводности для смесей аргон— гелий и вычисленными по формуле (5-8) получено удовлетворительное, В таблице приведены также экспе-242 [c.242]

    В последнее время термическую обработку и нагревание при ковке и штамповке проводят в атмосфере инертных газов (аргон, гелий), смеси азота с водородом и вакууме. При нагревании в перечисленных средах резко уменьшается глубина разрушения, что позволяет значительно снизить глубину механической обработки, существенно сократить расход ценного металла и обеспечить точную штамповку деталей. [c.88]

    Существенное влияние на коррозионную устойчивость используемых в кораблестроении алюминиевых сплавов оказывает метод их сварки при изготовлении конструкций. Свойства алюминия определяют характерные особенности сварки алюминиевых сплавов по сравнению со сталью или другими металлами. Среди применяемых в кораблестроении методов сварки больше всего известна сварка з среде защитных газов (аргона, гелия или их смеси) с неплавкими (вольфрамовыми) или плавкими электродами. Аргонно-дуговую сварку с вольфрамовыми электродами осуществляют с помощью переменного тока. [c.126]

    Природные газы состоят в основном из метана (табл. 22). Наряду с метаном в них обычно содержатся этан, пропан, бутан, небольшое количество пентана и высших гомологов и незначительные количества неуглеводородных компонентов углекислого газа, азота, сероводорода и инертных газов (аргона, гелия и др.). [c.145]

    В настоящее время существует ряд методов получения углеродных и алмазоподобных пленок. Одним из наиболее эффективных является плазменнодуговой химический метод осаждения пленок из газовой фазы в вакууме при пониженном давлении (P VD-метод). Для создания условий реализации высокой скорости роста пленок в данном методе генерируется сверхзвуковая плазменная струя аргона (гелия), в которую вводятся различные смеси газов с углеродосодержащими реагентами (СН4, С2Н2 и т.д.). [c.82]


    На рис. 4.12 приведена схема ячеек для измерения равновесных, а иа рис. 4.13—окислительно носстановительных потенциалов металлов в хлоридных расплавах. Как видно из рисунков, измерительные ячейки герметизированы для создания в них желаемой атмосферы (инертная, окислительная и т. д.). Как правило, такие ячейки перед началом опыта вакуумируют, расплавленный электролит в[>[держивают некоторое время в вакууме для удаления растворенных газов, а затем зополняют прибор чистым аргоном, гелием или азотом. Условия изотермнчности выполняются применением массивных металлических блоков, в которые помещают электролитические ячейки. Температуру в ячейках измеряют с помощью термопар. [c.101]

    Газ-носитель. В качестве газа-носителя наиболее часто применяют аргон, гелий, азот и водород. Выбор газа обычно зависит от типа детектора. Газы используют прямо из баллонов. Необходимо тщательное удаление воды из газов, для чего используют молекулярные сита. Более тщательная очистка необходима при проведении анализа в условиях программированного изменения температуры колонки и нри работе с высокочувствительными ионизационными детекторами, где примеси искажают пулевую линию. Скорость газа-носителя измеряется вмонтированными в прибор ротаметрами. Она подбирается эксперименталы[о и обычно варьируется в пределах 10—100 см /мии. На воспроизводимость результатов влияет устойчивость газового потока, и поэтому современные приборы снабжены стабилизаторами. [c.296]

    Детектор электронного захвата (ДЭЗ) успешно применяется для определения малых концентраций галоген-кислород- и азотсодержащих веществ, металл-оргаиическнх соединений ы других веществ, содержа-, щих атомы с явно выраженным сродством к электрону. В ионизационную камеру детектора помещен радиоактивный источник (тритневый или никелевый N1). В качестве газа-носителя используются азот, аргон, гелий или другие газы, способные ионизироваться, например  [c.355]

    Порошковый материал нагревается в потоке плазмы, имеющей температуру до 8000°С и, расплавляясь, с большой скоростью наносится на окрашивае- мую поверхность. ГЪтазму пол чают при пропускании инертного газа (аргона, гелия, азота ) через вольтову дугу. Быстрый нагрев (в течение нескольких секунд) и наличие инертного га за предотврашают разложение полн.мгра. [c.113]

    Шлифы и краны для ячеек. Большинство ячеек работают в атмосфере какого-либо газа (азота, аргона, гелия, водорода и др.). Попадание воздуха в ячейку недопустимо, поэтому для гермегиза-ции применяют хорошо притертые заливные шлифы и краны. Для удобства работы используют нормальные шлифы НШ-10 НШ-14,5 НШ-19 НШ-29 НШ-45 и т. д., делая их заливными. В случае поломки их легко заменить в процессе работы. Делают и нестандартные обычные заливные шлифы, и цилиндрические для исследуемого электрода. Изготовление шлифов см. 55 и 56. [c.217]

    Чепмен и Доутсон 1Л. 5-1] впервые экспериментально показали наличие эффекта термодиффузии. Подробное экспериментальное исследование термодиффузии было проведено Иббсом (Л. 5-2, 5-3, 5-4], который провел опыты с различными бинарными смесями водород — углекислый газ, водород — азот, азот — углекислый газ, водород — аргон, гелий — аргон. [c.232]

    В более поздней работе Мезон и Сахена [Л. 5-20] произвели проверку уравнения Мукенфусса и Кертисса, используя экспериментальные данные по смесям гелия с аргоном, гелия с ксеноном, аргона с гелием и тройной смеси гелий — аргон — ксенон. Они получили значительно большие отклонения, порядка 10%. [c.256]


Смотреть страницы где упоминается термин Аргон см Гелий: [c.140]    [c.17]    [c.93]    [c.63]    [c.231]    [c.379]    [c.53]    [c.297]    [c.245]    [c.434]    [c.216]    [c.21]    [c.44]    [c.315]    [c.242]    [c.257]    [c.70]    [c.102]   
Общая химия в формулах, определениях, схемах (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон



© 2025 chem21.info Реклама на сайте