Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие классы ядерных РНП

    Виды ядерных реакций. Изучено множество ядерных реакций различных типов. Самопроизвольный распад радиоактивных изотопов представляет собой ядериую реакцию, в которой исходным является одно ядро. Известны и другие ядерные реакции, при которых протон, дейтрон, а-частица, нейтрон или фотон (обычно у-лучи) реагирует с ядром атома. Продуктами ядерной реакции могут быть тяжелое ядро и иротон, электрон, дейтрон, а-част1ща, нейтрон, два или более нейтронов или фотон. Кроме того, существует и такой важный класс ядерных реакций, при котором очень тяжелое ядро в результате присоединения нейтрона становится нестабильным и распадается (делится) на две части примерно равных размеров, испуская несколько нейтронов. В предшествующих главах этот процесс деления уже упоминался, и он описывается в следувэщем разделе данной главы. [c.545]


    Имеющиеся в настоящее время данные позволяют ответить на эти вопросы. Они свидетельствуют о том, что удаление нетранслируемых интронов при процессинге предшественников мРНК протекает таким образом, что следующие друг за другом экзоны, т.е. кодирующие фрагменты мРНК, никогда физически не разобщаются. Экзоны очень точно соединяются между собой с помощью молекул другого класса РНК, присутствующих в ядре и называемых малыми ядерными РНК (мяРНК). Функция этих коротких ядерных РНК, состоящих приблизительно из ста нуклеотидов, долго оставалась непонятной. Ее удалось установить после того, как было обнаружено, что их нуклеотидная последовательность комплементарна последовательностям на концах каждого из интронов. В результате спаривания оснований, содержащихся в мяРНК и на концах свернутого в петлю интрона, последовательности двух экзонов сближаются таким образом, что становится возможным удаление разделяю- [c.917]

    Другие классы ядерных РНП-частиц [c.220]

    Примерно в то же время развивался и другой класс плазмотронов — высокочастотные индукционные плазмотроны. Это развитие явилось более специфическим основной первоначальный вклад был сделан в области источника электропитания — высокочастотного генератора, работающего в области радиочастот. Настоящим первоначальным стимулом здесь также были потребности военно-космической техники моделирование и разработка транспортного ядерного реактора на гексафториде урана и необходимость получать потоки плазмы с менее высокими линейными скоростями и более равномерным профилем температур по сечению потока. После создания таких генераторов потребовался более высокий ресурс работы плазмотрона, который не достигался с использованием плазмотронов из диэлектрических материалов (кварца, оксида алюминия и других керамических материалов). В процессе этих работ были созданы разрядные камеры из нитридных керамических материалов (нитриды бора и алюминия), а также комбинированные разрядные камеры, выполненные в виде разрезных водоохлаждаемых камер из немагнитного металла, прозрачные к электромагнитному излучению с индуктора, снабженные или внешним диэлектрическим ограждением, или герметизирующими диэлектрическими вставками в вертикальных разрезах в стенке разрядной камеры. [c.44]

    Поэтому трудно решить, получена ли исследуемая отвержденная смола из продукта для эпоксидной смолы или из какого-либо другого класса смол. Наличие многоатомного или много-ядерного фенола само по себе ничего не доказывает, так как фенолы такого типа могут быть использованы и для получения фено-ло-альдегидных смол. Присутствие азота не доказывает наличия амино-альдегидной смолы, так как существует ряд продуктов для эпоксидных смол, содержащих азот кроме того, азот может быть введен в молекулу эпоксидной смолы в процессе отверждения за счет аминного отвердителя. [c.921]


    Релаксационный м етод используется в основном для исследования парамагнитных комплексов и основан на ускорении релаксации ядерного спина в таких системах. Исследование можно проводить по различным ядрам компонентов комплекса, но чаще всего его проводят по ядрам растворителя. Исследование по резонансу растворителя имеет ряд преи.муществ перед другими методами можно исследовать низкие концентрации комплексов, а также комплексы, не содержащие магнитного ядра исследование не требует спектрометров высокого класса. [c.317]

    При подготовке пятого издания в него внесены дополнения и изменения и сделаны некоторые сокращения. Введены два новых раздела "Классы неорганических соединений" и "Периодический закон и свойства соединений". Раздел 5 назван "Термохимия и химическое равновесие", в нем собраны задачи и упражнения по расчету изменения энтальпии, энтропии, свободной энергии Гиббса, по их применению для описания химических реакций и по расчету концентраций в равновесных системах. Главы "Равновесие в растворах электролитов" и "Направление обменных химических реакций в растворах электролитов" объединены в один раздел "Ионные реакции в растворах". Этот раздел существенно переработан. В раздел, посвященный химии отдельных элементов, включены упражнения по составлению уравнений реакций, отражающих важнейшие свойства их соединений. Несколько сокращена глава "Физико-химические свойства разбавленных растворов" и ей дано другое, более конкретное, название "Коллигативные свойства растворов", отражающее то, что в данном разделе рассматриваются свойства растворов, зависящие от концентрации частиц. Исключена глава "Радиоактивность. Ядерные реакции", так как обсуждаемые в ней вопросы фактически являются содержанием физики. Все изменения имели своей целью приблизить содержание задач и упражнений к химической практике. При переработке пособия мы стремились сохранить содержание, поэтому задачи и упражнения, имевшиеся в четвертом [c.3]

    В некоторых случаях другие методы могут оказаться более экспрессными или более чувствительными. Например, ядерный магнитный резонанс (ЯМР) зачастую дает больше информации о строении молекул некоторых классов растворимых органических веществ без спектров сравнения или стандартов. Стандарты менее важны также в масс-спектрометрии, где объем исследуемого образца может быть и меньше, но вещество должно быть летучим, однако область применения метода порой уже, чем в случае ИК-спектроскопии. Газовая хроматография, масс-спектрометрия и ультрафиолетовая (УФ) спектроскопия имеют превосходную чувствительность к следовым количествам (естественно, в пределах их чувствительности). Кроме того, для некоторых веществ эти три метода способны давать и превосходные количественные результаты. Спектроскопия комбинационного рассеяния (КР) света может быть использована в аналитических целях аналогично ИК-спектроскопии, но чаще как дополняющий, а не конкурирующий метод [6]. Таким образом, ясно, что аналитик должен сознавать возможности и ограничения всех доступных методов. [c.13]

    Установлено, что гигантская молекула 45S р-РНК (м. в. = 4,4-10 ) содержит два класса последовательностей один из них соответствует предшественникам цитоплазматической р-РНК, 28S р-РНК (м. в. = 1,6-10 ) и 18S р-РНК (м. в. = 0,6-10 ), а другой — ядерной, быстро разрушающейся РНК (м. в. = 2,2 -10 ). [c.95]

    Другим классом временных задач, с которыми приходится сталкиваться физикам, являются вопросы выгорания ядерного горючего, накопления шлаков и их выгорания, коэффициент воспроизводства ядерного горючего и т. п. Для этих задач характерны масштабы времени порядка часов (или даже лет) в отличие от вопросов устойчивости реакторов, для которых характерно время порядка долей секунды. Определение критической массы или распределения плотности нейтронов проводится для стационарного режима работы реактора, однако повседневная работа реактора в стационарном состоянии связана с медленным изменением концентрации ядерного горючего. Ядерное горючее вводится в реактор согласно предусмотренному циклу, за исключением реактора с циркулирующим ядерным горючим. По мере постепенного выгорания ядерного горючего его компенсация может бтлть осуществлена посредством компенсирующих стержней. [c.21]

    Метод Хюккеля, таким образом, вовсе не так плох, как это может показаться на первый взгляд или при разборе тех совершенно неудовлетворительных выводов, которые приводятся почти во всех стандартных учебниках. В том случае, когда наши предположения относительно и справедливы, метод Хюккеля представляет собой неплохой упрощенный вариант метода Попла. Пренебрежение недиагональными матричными элементами между АО несвязанных атомов оправдать довольно трудно, но можно надеяться, что при рассмотрении молекул только одного класса соединений мы сможем ввести поправку путем эмпирической подгонки параметров Pг j. Необходимость учета полярности связей является, конечно, гораздо более серьезной трудность , однако даже и в этом случае, вероятно, удастся ввести некоторую поправку на наличие у атомов полярных молекул небольших зарядов, выбирая соответствующим образом параметры аг. Тем не менее весь расчет становится все же довольно утомительным и не особенно надежным, поскольку нельзя быть уверенным в том, что значения параметров, которые дают хорошие результаты для молекул одного типа, окажутся пригодными для других молекул. Большинство примеров неудачного применения метода Хюккеля появляется вследствие ошибочного предположения, что параметры Хюккеля , найденные для одного класса соединений, можно использовать в случае других классов. Еще более серьезные ошибки возникают при использовании метода Хюккеля для расчетов ионов. В этих случаях явно неверно основное предположение о том, что межъ-ядерное и межэлектронное отталкивания взаимно компенсируют друг друга. Для таких систем методом Хюккеля можно пользоваться только с большой осторожностью. [c.132]


    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Регуляция скорости транскрипции—это, по-видимому, важнейший элемент механизма действия глюкокортикоидных гормонов, но он не является единственным. Удалось выявить, что эти гормоны регулируют также процессинг и транспорт ядерных транскриптов (например, а,-кислых глюкопротеинов), скорость распада специфических мРНК (например, гормона роста и фосфоенолпируват-карбоксикиназы), наконец, посттрансляционный процессинг (различные белки вируса опухоли молочных желез). Создается впечатление, что этот и другие классы стероидных гормонов способны действовать на любом уровне переноса информации от ДНК к белку, причем относительное значение воздействия на каждом из уровней варьирует от системы к системе. [c.218]

    Иониты так называемого ядерного класса, изготовляемые по специальной технологии, характеризуются высокой степенью чистоты и содержат < 200 mz a железа, < 100 mz .i меди, < 100 мг1л свинца и других тяжелых металлов. К ионитам этого класса относятся, помимо указанных в таблице, также иониты Bio-Rad A. G. и Bio-Rex, изготовляемые фирмой 1 для нужд лабораторий. [c.164]

    Дисперсная фаза структурированных НДС в ядерной части на определенном этапе представлена газопаровыми пузырьками, капельками изотропной и анизотропной жидкости, кристаллами, ассоциатами и комплексами асфальтосмолистых веществ и других ВМС, кристаллитами углерода. Во многих случаях эти виды ДФ могут находиться в структурированных НДС одновременно. При этом следу ст подчеркнуть, что частицы ДФ данного вида, находящиеся в конденсированном состоянии, могут бьггь представлены органическими соединениями различных классов или относящимися только к одному классу, гомологическому ряду или группе. Так, кристаллическое ядро ДФ может быть образовано парафиновыми, ароматическими или смешанными углеводородами в таких системах как нефть, дистиллятные и остаточные продукты переработки нефти и газа, битумы и пеки, находящиеся при температурах, более низких, чем температура их застывания или стеклования, или сетчатыми ароматическими макромолекулами в графите. Состав, структура, размеры, объемные и поверхностные свойства ядерной части частиц ДФ, конкретный набор и концентрация различных видов ДФ в данной структурированной НДС в процессах получения нефтяного углерода определяются многими факторами природа сырья, температурно-временной режим и давление карбонизации, среда, степень превращения сырья, технологические и аппаратурные особенности процесса, тип и интенсивность внешних энергетических воздействий и т.д. [c.108]

    Количественным показателем степени чистоты вещества служит концентрация в нем примесей, выраженная в атомных либо молярных долях. В СССР принято несколько способов классификации чистоты химических веществ. Так, вещества подразделяют по допустимой области их применения, например вещества реакторной, полупроводниковой чистоты и т. п. Чистоту вещества можно оценить по так называемому баллу чистоты , равному десятичному логарифму числа атомов основного вещества, приходящихся на один атом примеси. В производстве химических реактивов вещества по степени их чистоты подразделяют на три класса и десять подклассов класс А с содержанием примесей от 10 (I) до 10" (П)% класс В с содержанием примесей от 10 (П1) до 10" (VI)% и класс Сссодержанием примесей от 10" (VII) до 10"1 (Х)%. Начиная с 10" % примесные компоненты называют микропримесями. Те или иные примеси в веществе по-разному влияют на его свойства, поэтому их предельно допустимая концентрация может быть различной. Компоненты, влияние которых на рабочие характеристики материала наиболее значительно, получили название лимитирующих примесей. Примерами подобных примесей в материалах ядерной энергетики служат бор, гафний и кадмий, атомное содержание которых в основном материале не должно превышать 10 — 10" %, в то время как допустимое содержание других примесей составляет 0,03 — 0,04%. [c.314]

    Масса всех частиц дана в электронных единицах, т. е. гпе- = 1. Фотон — частица, не имеющая массы покоя — это квант электромагнитного поля. Далее идет класс легких частиц — лептонов, возникающих при распаде других частиц либо возникающих пар ами (частица + античастица) под действием фотонов их спины равны 1 . Между лептонами и протоном сгруппирован класс мезонов со спином, равным 0. Пионы или я-мезоны являются квантами ядерных полей. По-видимому, взаимодействие протона и нейтрона обусловлено мезонным полем (Юкава), т. е. взаимный переход этих частиц протекает за счет обмена мезонов между нуклонами. Основную роль в этом обмене играют я-мезоны. Схемы перехода можно представить так  [c.76]

    Соотношение эквивалентности определяется следующим образом говорят, что два векторных поля V, и над Я эквивалентны, если и только если существует гомеоморфизм, т. е. биективное и непрерывное отображение в Я , которое отображает траектории и в траектории и. Применяя это определение к векторным полям градиента Vp(r, X), X Я , получаем соотношение эквивалентности, действующее в ядерном конфигурационном пространстве Я , согласно которому две ядерные конфигурации X, X е Я эквивалентны, если и только если их соответствующие векторные поля градиента Ур(г, X), Ур г, X ) эквивалентны. Далее, мы говорим, что ядерная конфигурация X е Я структурно-устойчива, если X является внутренней точкой ее класса эквивалентности. Другими словами, всегда можно найти окрестность V структурноустойчивой конфигурации X, такую, что V полностью содержится в классе эквивалентности X. Все конфигурации в V имеют тот же самый молекулярный граф, что и устойчивая конфигурация X. Эти молекулярные графы представляют одну-единственную структуру, и максимальная окрестность, которая содержится в классе эквивалентности X, называется структурной областью, соответствующей X. [c.58]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    Для начала, чтобы легче-было ориентироваться, ознакомимся бегло с природой, функцией и местами локализации основных классов нуклеиновых кислот внутри клеток. ДНК-это чрезвычайно длинные полимерные цепи, состоящие из многих тысяч соединенных друг с другом мономерных единиц - дезоксириб ону-клеотидов четырех разных типов, образующих характерные для каждого организма специфические последовательности. Молекулы ДНК обычно состоят из двух цепей. Хромосома прокариотических клеток представляет собой одну очень длинную двухцепочечную молекулу ДНК, собранную в компактное ядерное образование-нуклеоид. Напомним, что у прокариот генетический материал не окружен мембраной (разд. 2.4). [c.853]

    Рассмотрим несколько конщзетных моделей магнитогидродинамических устройств. Условно магнитогидродинамические насосы можно разделить на два класса кондукционные насосы и индукционные насосы. В последнее время интерес к электромагнитным насосам значительно возрос. Успешно эти насосы используются в металлургии (для непрерывной транспортировки металла), ядерной энергетике, других отраслях. [c.695]

    Привлекательная особенность ЯМР-спектроскопии состоит в том, что исследуемая молекула в целом прозрачна это позволяет беспрепятственно исследовать выбранный простой класс ядер, обладающих магнитными свойствами. Область протонного резонанса не будет содержать пиков, обусловленных какими-либо другими атомами в молекуле, так как, даже когда эти атомы магнитны, их линии поглощения смещены на расстояния, огромные по сравнению с диапазоном спектра протонного резонанса. Атомы углерода и кислорода, образующие скелет молекулы, вообще не дают самостоятельного эффекта. Присутствие других магнитных ядер (например, азота, фтора, фосфора, дейтерия) иногда сказывается на спектрах протонного резонанса, но только в виде нарушения положений пиков нли их множественности, но эти эффекты, как правило, носят предсказуемый Зсарактер. Ядра других галогенов (хлора, брома и иоДа), хотя и обладают магнитными свойствами, не оказывают влияния на множественность пиков протонного резонанса, так как электрическое поле, обусловленное ядерным квадрупольным моментом, взаимодействует с окружающими полями и изменяет ориентацию ядерного спина настолько быстро, что суммарный эффект его действия на соседние протоны сводится к нулю. Таким образом, ЯМР-спектроскопию чаще всего применяют в органической химии в тех случаях, когда требуются данные о числе водородных атомов различных типов в молекуле, а также об их взаимодействии между собой и с другими атомами, входящими в состав молекулы. Как и следовало ожидать, самые простые спектры обычно дают соединения с небольшим числом типов водородных атомов. Большие молекулы, обладающие низкой симметрией, как правило, дaюt довольно сложные спектры, но даже в этом случае удается получить ценные данные, не проводя полного анализа спектра ЯМР и не идентифицируя все пики. [c.257]

    Люди, занимавшиеся строительством реакторов, имели дело, по крайней мере в первый период, главным образом лишь с теми изменениями, которые возникают в материалах первых трех перечисленных выше классов. Эти изменения часто бывают весьма значительными и обычно вредны. Знание закономерностей этих изменений чрезвычайно важно для успешного сооружения и эксплуатации ядерных реакторов. Около 6 лет назад, когда было накоплено большое количество результатов наблюдений и развита теория радиационных повреждений в этих неорганических веществах, начало выясняться, что в органических полимерах — пластмассах и каучуках — под действием излучения происходят весьма глубокие и любопытные изменения, коренным образом отличающиеся по своему характеру от радиационных нарушений в кристаллических твердых телах. Эти изменения не всегда вредны. Некоторые пластмассы, например полиэтилен, под действием умеренных доз облучения упрочняются и становятся неплавкими, другие же становятся менее прочными, хрупкими, вплоть до превращения в порошок. При достаточно больших дозах, однако, почти все пластмассы и кау-чуки разрушаются и теряют свои полезные свойства. Явления разрушения или полимеризации малых органических молекул под действием ионизирующих излучений известны уже давно, но при больших размерах полимерных молекул эти реакции [c.7]

    Действие ионизирующих излучений на натуральный каучук и синтетические диеновые полимеры и сополимеры изучалось во многих работах. Это обусловлено, во-первых, тем, что большой интерес представляют поиски новых и лучших методов вулканизации для данного имеющего исключительное значение класса полимеров и, во-вторых, тем, что очень важно найти пути повышения х устойчивости к действию ядерных излучений для использования в ядерных реакторах и в других установках атомной техники. Начальная стадия этих исследовапий изложена в гл. И1. Почти все работы о действии излучения на диеновые полимеры, опубликованные до сих пор, носят технический характер. Получено значительное число данных о виде кривых растяжения и о других свойствах для разнообразных вулканизованных и невулканизованных каучуков, и в настоящее время можно считать, что действие иопизирующих излучений приводит преимущественно к сшиванию, если не считать тех случаев, когда доля диенового компонента очень мала, например в бутил-каучуке (стр. 133). Однако большинство этих работ относится к числу прикладных, и в соответствии с задачами этой книги ниже рассмотрены в основном лишь те исследования, которые дают возможность судить о происходящих реакциях. О большинстве остальных практически важных исследований только кратко упоминается, однако приводятся все необходимые ссылки, по которым можно найти более подробные сведения. [c.171]

    Химическая поляризация стала новым и мощным методом установления механизмов химических реакций, детектирования радикалов и радикальных стадий. С помощью ХПЯ легко определить спиновую мультиплетность пар, легко установить, из каких состояний — синглетных или триплетных — рождаются радикалы и молекулы метод позволяет разделить радикальные и нерадикальные пути реакции и оценить количественно их конкуренцию, идентифицировать нестабильные промежуточные продукты и обратимые радикальные стадии, которые не удается установить никакими другими. методами. Из кинетики ХПЯ можно определять константы скорости реакций, а из количественных данных по значению поляризации — кинетику быстрых реакций в радикальных парах (распад, изомеризация радикалов, реакции замещения, переноса электрона и т. д.), происходящих с характеристическими временами 10 - 10-9 с. С помощью ХПЯ можно определять знаки констант СТВ в радикалах, знаки констант спин-спипового взаимодействия в молекулах, времена ядерной релаксации в радикалах и молекулах, устанавливать участие горячих радикалов в реакциях. Методом ХПЯ широко исследованы механизмы всех классов химических реакций — термических, фотохимических, радиационно-химических — и получена новая богатая информация, обобщенная в ряде книг и обзоров (см., например, [14], там же сформулированы условия наблюдения ХПЯ и техника эксперимента).  [c.27]

    Ядра, у которых величина заряда и массовое число четные, не имеют ядерных моментов. Б[ этому классу относятся некоторые наиболее важные ядра, такхге, как и 0 . Ядра, у которых массовое число, или величина заряда, или то и другое нечетны, обладают магнитными моментами. Магнитные моменты имеют протоны, С , и Р . Магнитно-резонансное поглощение протонов было широко изучено и стало важным способом исследования строения органических молекул. [c.635]

    Материал, относящийся к спектроскопии, помещен в главе 2 и частично в других главах он может быть использован или опущен по усмотрению преподавателя. Мы считаем, что можно вообще опустить весь этот раздел, если это покажется преподавателю более удобным, за исключением, может быть, последней части главы 28, посвященной современным успехам органической фотохимии. Если спектроскопия включается в изучаемый материал, то студенту должно быть ясно, что ему вовсе нет необходимости прорабатывать сразу весь материал главы 2. Будет лучше, если он разовьет свое понимание спектральных методов и затем сможет их использовать, возвращаясь к этой главе за справками и с целью более глубокого усвоения материала, по мере того как при знакомстве с новыми классами соединений будут появляться новые возможности применения этих методов. Мы широко использовали в изложении данные спектроскопии ядерного магнитного резонанса возможно, в этом слишком сильно сказалось влияние наших собственных научных интересов. Тем не менее нам кажется, что вряд ли следует отнести это к недостаткам, поскольку для качественного анализа ЯМР-снектро-скония приносит обычно больше пользы, чем ИК-спектроскопия она имеет еще и то преимущество, что ее гораздо легче понять. [c.11]

    Статьям собственно химического содержания предпослана в качестве общего введения статья Р. Флюэрти о взаимодействии различных видов излучения с веществом, напечатанная в новом журнале по ядерным вопросам Нуклеонике в 1948 г. Включение этой статьи, в которой изложены физические основы элементарных актов, вызывающих химические превращения, избавило нас от необходимости приводить многочисленные пояснительные примечания к другим статьям. Вводный характер имеет и обзорная статья М. Бэр-тона, посвященная действию ионизирующих излучений на различные классы соединений и систем. В последующих статьях рассматриваются более подробно отдельные конкретные системы. [c.6]

Рис. 2-1. Все клетки ограничены мембраной, содержат ядро или ядерное тельце и рибосомы. Далее мы увидим, что существует два основньи класса клеток, различающихся по другим структурным элементам. Рис. 2-1. Все клетки ограничены мембраной, содержат ядро или ядерное тельце и рибосомы. Далее мы увидим, что существует два <a href="/info/491439">основньи класса</a> клеток, различающихся по <a href="/info/1565673">другим структурным</a> элементам.
    Галогениды урапа составляют исключительно важный класс соединений урана. Фториды урана имеют особенно большое значение в современной атомной химической технологии и, по-видимому, приобретут еще большее значение в будущем. Хорошо известно применение летучего гексафторида урана UFe для отделения изотопа IJ235 па газодиффузионных заводах. Тетрафторид урана иГб — важный промежуточный продукт в производстве UFe и металлического урана. Растворы его в расплавленных смесях фторидов, таких, как NaF— ZrF4, LiF—ВеРг и других, находят ихирокое применение в качестве ядерного горючего и как среда в процессах [c.112]

    В природе не существует абсолютно жестких молекул в том смысле, что все. длины связи и все валентные углы в них имеют строго определенные значения. Напротив, все молекулы даже при температуре абсолютного нуля постоянно испытывают колебания, так что все атомы в них осциллируют с амплитудой в несколько десятых ангстрема около их средних положений. В этом смысле нет жестких молекул. Но существует еще много таких молекул, которые претерпевают быстрые деформационные перегруппировки со значительно большей амплитудой, при которых одни атомы дейт ствительно обмениваются положениями с другими. Такие перег группировки были найдены для молекул самых разнообразных классов,, начиная от таких неорганических молекул, как PF5, карбонилов металлов и металлорганических соединений и кончая органическими молекулами. Молекулы, которые ведут себя таким образом, называют стереохимически нежесткими. Обнаружение стереохимической нежесткости и ее исследование возможно лишь при помощи спектроскопии ядерного магнитного резонанса (ЯМР). Рассмотрим один из самых ранних примеров из области неорганики — PF5. [c.189]

    Г0РЯЧх4Я ЛАБОРАТОРИЯ — лаборатория, предназначенная для работы с радиоактивными препаратами высокой активности (до сотен тысяч кюри). В Г. л. производят выделение плутония и других трансурановых элементов, переработку тепловыделяющих злементов ядерных реакторов и продуктов деления, исследование физич. и химич. свойств материалов, обладающих высокой активностью, приготовление мощных источников излучения, радиохимич. очистку изотопов, радиохимич. анализ и т. д. Основная сиецяфич. особенность Г. л. — необходимость проведения работ при условии биохимич. защиты персонала, помещения и окружающей местности от проникающего радиоактивного излучения и загрязнения радиоактивными веществами — аэрозолями, пылью, жидкостями, парами и т. д. Опасность облучения персонала исключается благодаря хорошо разработанным системам защиты, дозиметрич. контроля, сигнализации и автоблокировки. Группа токсичности и класс Г. л. определяются степенью возможной опасности работы (вид и энергия излучения, физич. состояние источников, количество радиоизотопов и их относительная токсичность и т. д.). [c.500]

    ВОЗМОЖНОСТЬ изучать функции ядрышек. Ядрышко составляет до 35% обш ей массы ядра и содержит около 40% общего белка и 30% или более общей РНК ядра. Ранние радиоавто-графические исследования, проведенные Голдштейном и Мику [23], Вудсом [59] и другими, показали, что хотя ядрышко обладает некоторой способностью к синтезу РНК, большая часть ядерной РНК синтезируется в хроматине. Это заключение подтверждено результатами исследований биохимической активности изолированных ядрышек, которые обладают лишь ограниченной способностью к синтезу РНК [43]. В то же время ядрышко способно к синтезу белка и фактически именно в нем в основном и синтезируется ядерный белок [2, 3]. Одним из классов белков, синтезируемых в ядрышке, как указывалось выше, являются гистоны. По-видимому, механизм их синтеза сходен с описанным выше механизмом синтеза белка, в котором РНК декодируется рибосомами. Об этом свидетельствует тот факт, что синтез гистонов ингибируется пуромицином — специфическим ингибитором связанного с рибосомами синтеза белка, а также актиномицином D — специфическим ингибитором зависящего от ДНК синтеза РНК. Возможно, в ядрышке имеются рибосомы для сборки молекул гистона более детальная информация о природе механизма синтеза гистонов пока отсутствует. [c.40]

    После изучения некоторых свойств технеция и получения его эмиссионного спектра вновь начались поиски технеция в природе. Проблема возможного нахождения технеция в природе оставалась в 50-х годах нашего столетия одной из актуальных в геохимии этого элемента [53, 54, 58, 86, 170, 196]. В 1951 г. Мур [255] обнаружила в спектре солнечной атмосферы линии ионизированного технеция. Спустя год Меррилл [239, 240] отметил суш,ествование нескольких линий технеция в спектрах некоторых звезд (S- и М-классов). Наличие технеция на звездах подтверждено и другими исследователями [152], причем было установлено, что его количество мало отличается от содержания соседних элементов. Эти факты в сочета- НИИ с тем обстоятельством, что наиболее долгоживущий изотоп технеция обладает периодом полураспада лишь 2,6-10 лет [85, 198], позволяют предположить, что технеций образуется в результате протекающих на звездах ядерных реакций. [c.8]


Смотреть страницы где упоминается термин Другие классы ядерных РНП: [c.164]    [c.305]    [c.134]    [c.305]    [c.218]    [c.23]    [c.167]    [c.180]    [c.255]    [c.13]   
Смотреть главы в:

Гены высших организмов и их экспрессия -> Другие классы ядерных РНП




ПОИСК







© 2025 chem21.info Реклама на сайте