Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Групп теория, общий обзор

    Кинетика расслаивания жидкофазных систем. В связи с распространенностью многофазных систем большое внимание уделяется разработке теории их движения, причем в последнее время наблюдается бурное развитие этой области знаний. Обзор многочисленных работ, посвященных этой теме, изложен в [23, 24—26]. Сложность общего математического описания заставляет при решении конкретных задач делать те или иные допущения, вносящие определенные погрешности в решение задачи. Так, во многих случаях течение двухфазной системы может рассматриваться как ползущее, т. е. числа Рейнольдса, рассчитанные по диаметру частиц, очень малы (седиментация тонких эмульсий, суспензий и т. д.). Тогда возможна линеаризация уравнения Навье—Стокса, если пренебречь инерционными членами. Такое допущение справедливо и в случае, когда течение смеси в целом по отношению к внешним границам характеризуется большими числами Рейнольдса, тем не менее можно говорить о малости чисел Рейнольдса для движения частиц относительно сплошной фазы. Кроме того, инерционные эффекты менее существенны в системах, состоящих из группы частиц в органической жидкой среде. [c.288]


    Вслед за работами Лорентца по распространению электромагнитных волн в сплошных средах были созданы классические теории оптической активности (главным образом Борном, Мал-леманом и Куном). Одновременно сначала Розенфельдом и позднее Кондоном была разработана квантовая теория оптической активности. Эти теории дали нам общее выражение для оптической активности, но обычно они не имеют практического применения, так как для расчетов необходимо вводить слишком много упрощений и в классической, и в квантовой теориях. Общий обзор теоретических методов можно найти в книге Матье [22], опубликованной в 1946 г. Сущность теоретических подходов заключается в следующем. Молекулу разделяют на группы, каждая из которых в зависимости от ее симметрии рассматривается как изотропный или анизотропный осциллятор, и затем рассчитывают возмущение, вызванное взаимодействием между интересующим нас осциллятором и другими, находящимися вблизи него осцилляторами. [c.17]

    Мы ограничились основными типами мезоморфных термотропных мезофаз. Ясно, однако, что рассмотрение только симметрии должно было бы дать гораздо больше фаз. Более общее обсуждение, проведенное недавно и основанное на рассмотрении с помощью теории групп, содержится в обзорах [36, 37]. С экспериментальной точки зрения важно отметить хотя бы следующие семейства. [c.30]

    Обзор различных теорий окислительного фосфорилирования [82, 53] удобно начать, обращаясь снова к уравнению (10-11) >. Липман [84] предложил общую схему, соответствующую этому уравнению. Последовательность реакций начинается с присоединения группы Y —ОН [группы Y в уравнении (10-11)] по соответствующей двойной связи между атомами углерода в переносчике ВНг. Хотя реакции изотопного обмена (разд. Д,5) исключают возможность функционирования в качестве Y как ADP, так и Р, все же привлекательно предположение об участии в этом процессе связанного фосфат-иона, принадлежащего, например, фосфолипиду или коферменту. Бедный энергией аддукт У—ВНг уравнение (10-11)] путем окисления превращается в соединение Y B, близкое по реакционноспособности к ацилфосфату или тиоэфиру. [c.411]

    В отличие от теоремы Пойа техника итерационного подсчета не носит общего характера — для каждого типа задач нужно находить свои особые рекуррентные формулы. Сейчас в литературе имеются такие формулы для некоторых гомологических рядов (см. обзор [23]), в том числе для классического ряда алкапов [561]. Итерационный подсчет по сравнению с теоремой Пойа имеет простую математическую структуру, основывается только на комбинаторных соображениях (а не на сочетании комбинаторики с теорией групп). С другой стороны, расчеты по рекуррентным формулам легко реализуются на ЭВМ [23]. [c.142]


    Четырнадцать задач, включенных в практикум, разделяются на две части первая имеет дело с основными законами, теориями и представлениями химии, а вторая — с обзором основных свойств элементов по группам периодической системы Д. И. Менделеева. В действительности же обе части представляют единое целое и краткий обзор свойств элементов по группам периодической системы признан целесообразным, поскольку представляется возможность с позиций общей химии еще раз обсудить значение менделеевской системы химических элементов и одновременно получить дополнительный фактический материал, необходимый для рассмотрения еще целого ряда общехимических обобщений (концепция окисления — восстановления, специфика металлов и сплавов, структура и свойства координационных соединений и пр.). [c.3]

    Автором не ставилась цель - дать исчерпывающий обзор всех опубликованных работ по катализу реакций синтеза и превращений органических соединений серы, нами рассмотрены лишь закономерности протекания некоторых важных каталитических реакций. Обобщение этой информации с позиций промежуточного химического взаимодействия реагирующих веществ с катализатором может не только быть полезным при создании эффективных каталитических процессов получения органических соединений серы, но и иметь важное общее значение, так как в настоящее время развитие теории каталитического действия [18] идет в основном по пути установления частных закономерностей протекания отдельных групп каталитических реакций. [c.6]

    Классификация, группы, подчиненные другим группам. — Естественная система. — Правила и трудности классификации, объясняемые на основании теории общности происхождения, сопровождаемого модификацией. — Классификация разновидностей. — Происхождение всегда используется для классификации. Аналогичные, или адаптивные, признаки. — Родство общее, сложное и расходящееся ао радиусам. — Вымирание обособляет и разграничивает группы. — Морфология, сходство между членами одного и того же класса, между частями одного и того же организма. — Эмбриология, ее законы, их объяснение вариациями, которые возникают не в раннем возрасте и наследуются в соответствующем возрасте. — Рудиментарные органы, объяснение их происхождения. — Краткий обзор.  [c.358]

    Ван-Аркель и Снук [59] вывели полуэмпирическую формулу для концентрационной зависимости молярной поляризации дипольного вещества, которая в общем хорошо соответствует опыту, но не годится для соединений, содержащих гидроксильную группу [16]. Теория Онзагера объясняет изменение ориентационной поляризации в растворах алифатических и ароматических галогенопроизводных [60]. О связи между дипольным моментом и диэлектрической постоянной чистых жидкостей см. [16, 18, 19]. Сводный обзор поэтому вопросу опубликован Вильсоном [14]. Применяемая Бётхером [17] формула Ван-Аркеля и Снука приложима не во всех случаях [18]. [c.62]

    В. В. Морковников сообщил замечания по вопросу о молекулярных соединениях. Из общего обзора содержания различных химических соединений референт пришел к заключению, что распадение некоторых соединений, при возвышенных температурах, не может служить признаком для выделения этих соединений в особую группу так называемых молекулярных соединений. Каждое тело остается без изменения только в пределах температуры его существования. Перейдя затем к вопросу об атомности элементов, г. Морковников указал на невозможность проведения границ между изменениями физическими и изменениями химическими. Атомность элементов не есть величина определенная, но может изменяться, смотря по условиям в очень широких границах. Такое представление об атомности, хотя и разрушает основания, на которых построена современная теория строения, не пре иятствует однако пользоваться прежними представлениями об атомности для из. вестной сферы химических явлений. [c.672]

    Пожалуй, наиболее эффективны симметрийные аспекты теории Ландау при анализе фазовых переходов в кристаллах, поскольку соответству1оищй математический аппарат симметрии - представление пространственных групп кристаллов — очень хорошо разработан. Часто конкретные фазовые переходы в кристаллах требуют изощренного симметрийного анализа, поэтому метод Ландау на протяжении 10—15 лет непрерывно совершенствовался и развивался. Общий обзор различных направлений развития теории Ландау за последние два десятилетия сделан в конце 1. Целью настоящей книги является изложение современного состояния теории фазовых переходов Ландау применительно к кристаллам. При этом не имеет принципиального значения физическая природа самого фазового перехода, поскольку различные переходы — структурные, магнитные, сегнетоэлектри-ческие и т.п. - описываются в единой схеме на основе одного и того же аппарата теории представлений пространственных групп. [c.7]


    Основы новой теории были заложены в 1940 г., когда Сиджвик п Пауэлл сделали обзор стереохимии известных тогда неорганических соединений и заключили, что пространственное распределение связей для многовалентных атомов непосредственно связано с общим числом электронов валентного электронного уровня. Они предположили, что электронные пары, находящиеся в валентном уровне многовалентного атома, расположены всегда так, что отталкивание между ними минимально, независимо от того, являются ли они поделенными (связывающими) парами или неподе-ленными (несвязывающими или свободными) парами. В соответствии с этим предположением две пары будут располагаться линейно, три — в плоском треугольнике, четыре — тетраэдрически, пять — в виде тригональной бипирамиды и, наконец, шесть пар — октаэдрически. Оказалось, что указанные конфигурации, объясненные таким простым способом, правильно предсказывают формы молекул во всех известных соединениях непереходных элементов, для которых все электронные пары валентного уровня соединены с идентичными атомами или группами. Если одна или более электронных пар не поделены пли если имеется два или более разных видов присоединенных атомов, то следует ожидать отклонений т геометрически правильных структур. [c.198]

    В статье Пошкуса [12] рассмотрена молекулярная теория адсорбции на несиецифических адсорбентах, не содержащих иа поверхности ионов или полярных функциональных групп. В настоящей статье мы ограничимся кратким обзором общей теории адсорбции газов и паров на твердых поверхностях и ее применением к адсорбции на ионных непористых кристаллах (галоидные соли щелочных металлов) и ионных пористых кристаллах (цеолиты типа А и X). Приводятся также полученные в нашей лаборатории результаты расчетов термодинамических свойств простых молекул, адсорбированных на этих кристаллах. [c.23]

    КНИГИ авторы придерживались групповой систематики. Она служит как бы стержнем, вокруг которого сгруппирован весь остальной материал книги. В гл. 1 описаны типы металлоорганических соединений и дана общая характеристика каждого типа неза висимо от этого в гл, 2 обсуждается теория связи углерод—металл в ее различных аспектах, включая также связи с переходными металлами. Глава 3, посвященная препаративным методам, охватывает общие методы получения большинства веществ, описанных в гл. 4—10, и, таким образом, их повторение в этих главах становится излишним. После рассмотрения ряда соединений металлов по главным их группам (не для полного их перечня, а в порядке критического разбора их общих характеристик) следует краткий обзор реакций металлоорганических веществ с органическими соединениями, и в заключение дана глава, посвященная отношению гидридов, карбонилов и карбидов к металлоорганическим соединениям в целом. [c.14]

    Во всех теориях мембранного потенциала, рассмотренных в гл. III, предполагалось, что существует один тип ионообменных групп либо слабокислотные и слабоосновные, либо сильнокислотные и сильноосновные. Однако возможно, по крайней мере для стекол, существование групп смешанного типа, т. е. сильно- и слабокислотных анионных групп. Альтуг и Хэйр [58 ], изучая ионообменные свойства пористых стекол методом кислотно-основного титрования, показали, что в поверхности стекла существует два типа ионообменных групп, отличающихся по силе кислотности. Значение рКц более сильнокислотной группы составляло 5,1, а слабокислотной —около 7. Общая равновесная селективность стекол уменьшается в ряду К > Na" > ЬГ при обменной емкости 0,07 мэкв на 1 г стекла. В теоретическом обзоре гл. III, относящемся к мембранным потенциалам, которые возникают при погружении стекла в раствор, эта гетерогенность мембраны, обусловленная либо различием в природе узлов, либо степенью связанности в них ионов, не рассмотрена. Эта проблема подробно обсуждена в работах русских исследователей [59]. Зависимость потенциала стеклянного электрода от активности ионов в растворе при условии существования в стекле двух типов ионогенных групп, описывается уравнением вида / т [c.287]

    В неограниченно длинных полимерных макромолекулах появляется новый элемент симметрии, отсутствующий в молекулах конечной длины. Это — передача колебаний вдоль полимерной цепи по повторяющимся группам. Исходя из общей теории можно показать, что из всех нормальных колебаний цепи активными в инфракрасном спектре оказываются только такие, при которых все повторяющиеся группы колеблются в фазе друг с другом. Это легко понять, если учесть, что длина повторяющейся группы цепи (обычно величина порядка 10А) составляет всего 1/10 000 длины волны в инфракрасной области. Поскольку даже небольшие отклонения от совпадения фаз колебаний групп в цепи приводят к нарушению кооперативности колебаний цепи в целом, отсюда следует, что число нормальных колебаний, приводящих к появлению полос поглощения, для полимерной макромолекулы практически такое же, как и для изолированных групп, из которых составлена макромолекула. Если степень симметрии единичной группы высока, число нормальных колебаний полимера может быть очень мало. В таких случаях для исследования спектра колебаний молекул используется Раман-эффект, или эффект комбинационного рассеяния, рассматриваемый в следующем разделе настоящей главы. Теорию инфракрасных спектров полимеров можно найти в обзоре Кримма [c.290]

    ПОЛЯ лигандов. Монография Ватанабе [7] по применению операторных методов в теории поля лигандов является новым учебником, который заполняет пробел между элементарной квантовой механикой и теоретическими работами, выполняемыми в настоящее время для систем переходных металлов, йергенсен написал две монографии, в одной из которых [8] с точки зрения теории поля лигандов обсуждаются данные оптической спектроскопии до 1960 г., тогда как во второй [9] дан обзор общей научной литературы по комплексам переходных металлов до 1964 г. йергенсену принадлежат также три обширные обзорные статьи. Двумя наиболее интересными в рамках данного обзора являются статья по развитию взглядов на нефелоауксетичёские ряды и анализу литературных данных до 1963 г. [10], а также обзорная статья по дальнейшему расширению области применения теории поля лигандов в оптической спектроскопии [11]. Третья обзорная статья более общего характера посвящена вопросу использования спектроскопии для изучения природы химической связи [12]. Применение теории групп в теории поля лигандов проиллюстриро вано Коттоном [13]. Накамото [14] всесторонне рассмотрел теорию и приложения (до 1963 г.) инфракрасной спектроскопии в химии переходных металлов. Драго [15] представил хотя и вводное по характеру, но достаточно подробное обсуждение применения физических методов в химии переходных металлов. Бальхаузен и Грей [16] опубликовали свои лекционные записи по теории молекулярных орбиталей, включающие приложение теории молекулярных орбиталей к соединениям переходных металлов. В частности, оптическая и инфракрасная спектроскопия, а также теория поля лигандов нашли отражение в исчерпывающих авторитетных обзорах, поэтому в настоящей книге они не будут рассматриваться. Мы представим лишь основные идеи, необходимые для сопоставления с данными по электронному парамагнитному резонансу. Обсуждение прежних достижений метода электронного парамагнитного резонанса (ЭПР) нашло отражение в предшествующих обзорах и также не [c.8]

    Таким образом, в настоящее время строгая количественная теория разветвленной поликонденсации позволяет рассчитывать статистические характеристики произвольной системы, для которой выполняются оба постулата Флори об отсутствии внутримолекулярных реакций и о неизменности активности функциональных групп в ходе процесса. Как будет видно из настоящей главы, можно обобщить теорию на равновесную поликондепсацию мономеров с зависимыми функциональными группами. Однако для неравновесных процессов эта задача в общем виде не решена. Еще хуже обстоит дело с системами, в которых существенную роль играет реакция циклообразования. Расчеты статистических характеристик полимера в таких системах имеют пока в основном лишь полуэмнирический характер, причем степень точности полученных результатов и границы применимости используемых приближений остаются неизвестными. Итак, несмотря на значительный прогресс в развитии теории разветвленной поликонденсации, отмеченный в обзорах [99, 100], а такн е несомненный интерес ученых к данному вопросу в последние годы [101, 1021, строгая количественная теория этого процесса далека от завершения. [c.165]

    Хотя представления, положенные в основу этого обзора, несомненно, пригодны для изучения большого числа взаимодействий, их ни в коем случае нельзя считать подходящими абсолютно для всех систем. Например, ситуация, когда может происходить взаимодействие как А, так и его комплекса с лигандом и матрицей (/гдх и /гдзх — истинные константы), не рассматривалась в настоящем обзоре для этой ситуации предложена более сложная теория [19]. Однако, допуская, что единственная истинная константа ассоциации описывает все взаимодействия особого типа между растворенным веществом и матрицей, мы существенно ограничиваем область применения современных методик в количественной аффинной хроматографии с мультива-лентными растворенными веществами [18, 19]. Нетрудно представить себе, что последовательные взаимодействия растворенного вещества с матрицей могут характеризоваться увеличением или уменьшением констант связывания ввиду изменения стери-ческих факторов, связанных с расположением иммобилизованных групп X. Другой, уже обсуждавшийся аспект, ограничивающий применение настоящих методик, связан с допущением идентичности характеристик распределения в геле растворенного вещества и всех комплексов растворенное вещество — лиганд. Кроме того, совершенно не принимались во внимание кинетические соображения (химических процессов и массопередачи), касающиеся процесса распределения. В этом отношении более общая теория количественной аффинной хроматографии [34 показала, что ограничение значений констант скорости, вызванное предполагаемым достижением распределительного равновесия, вероятно, не имеет значения для исследований обычной колоночной хроматографии, но может сделать невозможным применение представленных выше выражений к результатам, полученным при высокоэффективной жидкостной хроматографии с использованием больших скоростей потока. Как отмечено в работе [35], возможное использование аффинной хроматографии для количественных исследований связывания лиганда, несом- [c.215]


Смотреть страницы где упоминается термин Групп теория, общий обзор: [c.19]    [c.137]    [c.13]    [c.13]    [c.348]    [c.274]    [c.130]    [c.16]    [c.72]   
Квантовая механика молекул (1972) -- [ c.358 ]




ПОИСК





Смотрите так же термины и статьи:

Обзоры

группы общие



© 2025 chem21.info Реклама на сайте