Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы механических испытаний общие

    Долговечность полимерных материалов, зависящая от их природы и физико-химических свойств среды, определяется сорбцией и диффузией среды, тепловыми флуктуациями и гетерогенными химическими реакциями. Наложение термофлуктуациопиых, адсорбционных и химических процессов и разница в скоростях нх протекания приводят к экспериментально наблюдаемому перегибу линий долговечности в агрессивных средах ио сравнению с испытаниями иа воздухе. Это обстоятельство требует осторожного отношения к ирименению различных эксиресс-методов и экстраполяции результатов, полученных ири таких форсированных испытаниях, особенно при высоких значениях напряжений, для прогнозирования длительной работоспособности материала, т. е. при небольших значениях механических напряжений. Как показывает анализ многочисленных экспериментальных исследовапий, полная и достоверная оценка практической пригодности и работоспособности напряженных конструкционных пластмасс в агрессивных средах может быть произведена при уровнях механических напряжений в диапазоне 20— 60 % от разрушающих. В этом диапазоне разрушение происходит за время, в течение которого наблюдают практическое насыщение материала жидкой средой и совместный эффект воздействия механического и химического факторов на кинетику разрушения. Экстраполяция этого участка общей кривой долговечности в область низких напряжений для прогнозирования длительного срока эксплуатации материала может привести к занижению времени и, следовательно, к повышению ресурса эксплуатации и надежности конструкции. Совместное решение двух экспоненциальных уравнений, описывающих долговечность в агрессивной среде и на воздухе, дает возможность определить напряжение, выше которого агрессивная среда не оказывает влияния иа характер разрушения материала. [c.43]


    ГОСТ 14359—69. Пластмассы. Методы механических испытаний. Общие требования. [c.240]

    В первой части главы 4 описываются существующие методы оценки эффекта вулканизующего действия переменных по времени температур. Приближенность упрощающих допущений, положенных в основу принятой в промышленности оценки, становится очевидной в свете рассмотрения общих закономерностей изменения свойств резин при вулканизации (кинетики вулканизации по различным показателям свойств, определенных лабораторными методами). Формирование свойств резин при вулканизации многослойных изделий протекает иначе, чем тонких пластин, используемых для лабораторных механических испытаний из однородного материала. При наличии материалов различной деформируемости большое влияние оказывает сложнонапряженное состояние этих материалов. Вторая часть главы 4 посвящена вопросам механического поведения материалов многослойного изделия в вулканизационных пресс-формах, а также способам оценки достигаемых степеней вулканизации резин в изделиях. [c.7]

    Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Методы испытаний на усталость Машины для испытания металлов иа усталость. Типы. Основные параметры Обработка поверхностным пластическим деформированием. Термины и определения Обработка поверхностным пластическим деформированием (ППД). Состав общих требований [c.106]

    Громадное разнообразие технических применений резины, сложность практически реализуемых режимов нагружения, недостаточность общей теории механических свойств резины как конструкционного материала привели к тому, что наряду с общими методами механических испытаний громадное развитие получили всевозможные специальные методы, относимые в предлагаемой классификации ко второй группе. [c.14]

    ОБЩИЕ ТРЕБОВАНИЯ К ПРИБОРАМ И МЕТОДАМ МЕХАНИЧЕСКИХ ИСПЫТАНИИ [c.16]

    В книге рассматривается один из важнейших разделов практикума по технологии резины — физико-механические испытания резин. В ней описываются общие требования к подготовке образцов и проведению испытаний, методы определения прочностных, усталостных, деформационных и других свойств резины, а также методы определения свойств армирующих текстильных материалов и адгезии их к резинам. [c.2]


    Общие требования к приборам и методам механических испытаний 17 [c.17]

    Важность соблюдения условий подобия при проведении механических испытаний наглядно демонстрируется стандартизацией их методики в государственном, а некоторых испытаний и в международном масштабе. Общие правила отбора проб, заготовок и образцов для механических и технологических испытаний установлены ГОСТ 7564-89. Требования к образцам для испытаний изложены в соответствующих ГОСТах на проведение испытаний. В них, с учетом всех условий подобия, унифицированы формы и размеры образцов, качество их изготовления, основные методи- [c.250]

    В монографии изложены основные направления и методы исследования свойств металлических порошков дисперсионный анализ, включающий анализ порошков по фракциям, измерение удельной поверхности, определение размеров, форм, микроморфологии и микроструктуры отдельных частиц испытание физических и физико-механических свойств, определяющих плотностные, реологические и электромагнитные характеристики порошков рентгенографические методы исследования структурных несовершенств и инструментальные физические методы локального и общего химического анализа способы анализа фаз и, наконец, оценка условий безопасной работы с порошками. [c.111]

    Требования к методам оценки истираемости гранул. Требования, предъявляемые к методике оценки прочности (долговечности) гранул катализатора или сорбента в условиях истирания, должны отражать как специфику, присущую именно условиям истирания, так и некоторые общие положения, относящиеся к любым механическим испытаниям. [c.9]

    Для проведения механических испытаний одновременно с изготовлением контролируемого аппарата сваривают контрольные пластины из тех же материалов, теми же методами сварки и обработки. При ручной и автоматической сварке на каждое изделие каждый сварщик сваривает одну пластину. При сварке трубчатых элементов количество контрольных стыков определяется в размере 1% от общего числа стыков, сваренных каждым сварщиком. [c.160]

    При изучении деструкции ионообменных материалов исследователь должен заранее выбрать тот минимум физико-химиче-оких свойств, определение которых позволит сделать объективный и однозначный вывод об основных процессах, протекающих в ионитах. По нашему мнению, такими свойствами являются обменная емкость (в исходном материале и после испытания), масса в сухом и набухшем состоянии, коэффициент влагоемко-сти и плотность. В отдельных опытах целесообразно определить также (методом элементного анализа) общее содержание основного элемента в составе функциональных групп, механическую прочность, осмотическую стабильность и пористость. [c.9]

    Некоторые из этих методов по своей физической природе не подходят для исследования волокон. Например, многие механические методы, в которых испытание сопровождается определением модуля потерь, не годятся для измерения Гст волокон, поскольку два из трех линейных размеров волокна очень малы. Можно было бы проводить испытания на филаментных нитях, но последние не типичны для большинства текстильных волокон, выпускаемых в настоящее время. Очевидно, что к волокнам неприменимы методы измерения проницаемости, сжимаемости, диффузии малых молекул и измерение энергии активации вязкого течения. Из методов, которые могут применяться для волокон, наиболее общим является измерение свободного объема (дилатометрия). Определение Ггт из измерений удельного объема двух полиэфирных волокон показано на рис. 31.2. Эти результаты получены при использовании воды в качестве вытесняющей жидкости. Перед испытанием волокна замачивали в воде на 24 ч. Для измерения этим методом Гст сухих волокон в качестве вытесняющей жидкости можно использовать низкомолекулярное минеральное масло. [c.482]

    В книге описываются методы и приборы, применяемые для механических испытаний каучуков, резиновых смесей и вулканизатов. Кратко характеризуются важнейшие особенности механических свойств этих материалов. Особое внимание уделяется общим тенденциям развития важнейших методов и совершенствования существующих приборов. [c.542]

    Общие закономерности упругих, релаксационных и прочностных свойств будут рассмотрены в связи с конкретными методами их определения. Здесь, однако, уместно остановиться еще на некоторых особенностях механического поведения каучуков и резин, играющих существенную роль при оценке этих материалов и при проведении соответствующих механических испытаний. [c.12]

    Исходя из сформулированного выше подхода к проблеме измерения механических свойств пластмасс, в книге рассматриваются три группы методов испытаний, которые непосредственно отвечают поставленной задаче. Это различные варианты долговременных испытаний, в том числе измерения релаксации и ползучести (первая часть книги, написанная А. А. Аскадским) динамические испытания пластмасс, в которых варьируемым параметром является частота нагружения (вторая часть книги, ее автор—А. Я. Малкин) наконец, наиболее часто встречающиеся в инженерной практике измерения механических свойств пластмасс на разрывных машинах, копрах, твердомерах и т. п. (третья часть книги, написанная В. В. Ковригой). Рассмотренные методы, хотя и не исчерпывают возможностей измерения механических свойств пластмасс, однако дают наиболее общий и физически обоснованный подход к оценке объективных характеристик полимерных материалов. [c.7]


    Книга содержит подробное описание общих для всех силикатных строительных материалов определений химического состава и физико-механических свойств сырья и готовой продукции. Для каждого определения приведен перечень необходимых реактивов и аппаратуры, изложен порядок проведения работы, даны расчетные формулы и формы записи результатов. Даны указания по отбору средней пробы материала и ее подготовки к испытанию. Приведены способы анализа топлива (твердого, жидкого и газообразного) и определения его теплотворной способности, концентрации водородных ионов в шликерах и растворах, а также контроля шлифовально-полировальных суспензий (в технологии стекла). Описаны методы исследования отдельных строительных материалов — вяжущих, асбеста, керамики и стекла, являющиеся характерными только для каждого из этих материалов. Наряду с описанием методов исследования сырья и материалов приведено описание методов их контроля на отдельных стадиях технологического процесса. [c.2]

    Устойчивость к механическому воздействию является существенным фактором в общей технологической характеристике латексов. Последние подвергаются механическому перемешиванию на различных стадиях производства и переработки. Поэтому в технологической практике вопросам устойчивости синтетических латексов при механических воздействиях уделяется значительное внимание, предложены методы и приборы для соответствующих испытаний [30]. [c.292]

    Эти общие положения относительно влияния различных факторов, улучшающих ударную вязкость стали, в сочетании с данными анализов хрупких разрушений в эксплуатационных условиях являются основой для многих современных стандартов на материал. Большинство этих стандартов дают только качественные рекомендации относительно действия различных факторов, определяющих склонность материала к хрупкому разрушению, т. е. позволяют выбрать марку стали, технологию ее производства, режим термообработки и уровень кратковременных механических свойств, минимальную энергию разрушения при испытаниях на ударную вязкость (обычно методом Шарпи) при данной температуре. Стандарты учитывают толщину листа, и, как правило, для листов толщиной менее 13 мм термообработка не обязательна. [c.149]

    Определение изменения механических свойств при растяжении после коррозии (предел прочности, удлинение) Лабораторные испытания, особенно в случае межкристаллитной коррозии и избирательной коррозии Нет необходимости снятия продуктов коррозии, данные непосредственно интересуют инженеров, результаты автоматически относятся к наиболее слабому сечению, возможно измерить межкристал-литную избирательную коррозию наряду с равномерной Меньшая чувствительность по сравнению с весовым методом, трудность выделения межкристаллитной коррозии из общего показателя %/год К а, %/год [c.14]

    Испытания резин механические — определение механич. свойств образцов резин, проводимое унифицированными методами. Цель И. р.— контроль качества сырья, полуфабрикатов и готовых изделий резинового производства. К И. р. относят также определение условных показателей, к-рые косвенно характеризуют поведение материалов при эксплуатации и проводятся специальными методами, имитирующими соответствующие условия нагружения. Показатели, определяемые с помощью специальных методов, пригодны лишь для сравнительной оценки материалов, предназначенных для конкретных условий эксплуатации. Если в результате исследований механич. свойств установлены общие закономерности механич. поведения резин, описываемые аналитически, то физич. константы найденных ур-ний, являющиеся абсолютными характеристиками испытуемого материала, определяют так наз. общими (или физическими) методами. Показатели физич. методов характеризуют свойства материалов независимо от конструкции образца для испытания. [c.445]

    Наряду с общими методами анализа мономеров и полимеров приводятся анализы отдельных видов сырья многоатомных спиртов, альдегидов, карбоновых кислот, производных бензола, азотсодержащих соединений и пластификаторов анализ отдельных видов полимеров полистирола, поливинилового спирта, феноло-формальдегидных смол, фенопластов, мочевино-формальдегидных смол. Описаны теплофизические, физико-механические и электрические испытания пластмасс. [c.2]

    Колеса для пневматических щин. Ободья глубокие с посадочными полками 15°, с номинальным диаметром 17,5 19,5 22,5 и 24,5. Основные размеры Средства автотранспортные. Штуцер контрольный пневматических тормозов. Присоединительные размеры и технические требования Средства автотранспортные. Штуцер контрольный гидравлических тормозов. Присоединительные размеры и технические требования Фонари освещения номерного знака автотранспортных и мототранспортных средств. Световые и цветовые характеристики. Методы испытаний Наконечники проводов к выводам аккумуляторных батарей и стартеров. Технические условия. — Взамен Н 1438—63 Приборы звуковые сигнальные автотракторные. Типы. Основные параметры. Указания по установке на транспортных средствах. — Взамен ОСТ 37.003.007—71 Прерыватели указателей поворота и аварийной сигнализации механических дорожных транспортных средств. Общие технические условия. — Взамен ОСТ 37.003.021—73 [c.288]

    Основной производственный процесс машиностроительного предприятия разделяется на три стадии а) заготовительную — изготовление литых, кованых и штампованных заготовок б) обрабаты-ваюш,ую — обработка заготовок различными методами, в том числе механическим, термическим, химическим и др. в) сборочную — сборка деталей в узлы, общая сборка и испытание машин. [c.5]

    С лабораторными и эксплуатационными коррозионными испытаниями связаны и методы оценки. Результаты иоиытаний оценивают визуально по изменению состояния поверхности, массы и размеров, общей площади и распределению участков неравномерного коррозионного разрушения, изменению структуры и виду разрушения, выявленным металлографическим путем, изменению механических и эксплуатационных свойств. Наиболее распространенным методом оценки коррозии металлов является определение убыли массы, которую можно оценить количественно, считая, что коррозия протекает равномерно. По этой убыли [c.91]

    Стандарт устанавливает общие требования к выбору пластмасс для деталей машин, приборов и других технических изделий, поставляемых в макроклимати-ческие районы с тропическим климатом по ГОСТ 15151—69, и методы их испытаний по следующим показателям трибо-стойкости коэффициенту сохранения свойств (к), определяемому по изменению показателей физико-механических свойств и внешнего вида [c.630]

    Переменное погружение (метод В) также часто применяется для определения стойкости в межкристаллитной коррозии. Режим испытаний такой же, как и для общей коррозии. Однако эти испытания длительны и требуют 15—20 суток. После испытаний изготовляют шлифы, на которых металлографически определяется наличие межкристаллитной коррозии. Для испытаний на межкристаллитную коррозию можно также применять стандартные образцы для механических испытаний. При наличии межкристаллитной коррозии резко снижаются механические свойства материала, в особенности такое свойство как удлинение. [c.265]

    Согласно этому методу, на основании накопленного опыта по проведению технологического процесса вулканизации и из известных эмпирических закономерностей по влиянию параметров процесса на его результаты, при конкретных конструкциях изделий, -составе материалов и известных их характеристиках, выбирается ориентировочный режим вулканизации. Выбранный режим проходит производственную проверку. Для этого изделия вулканизуют по исследуемому режиму, производя при вулканизации замеры температур во времени на определенных участках внутри изделия. Из полученных кривых t x) рассчитывают эффекты и эквивалентные времена вулканизации Составляется представление о равномерности температурного поля, общем уровне температур и степени вулканизации резин в зависимости от продолжительности процесса. Если режим по температурным замерам оказывается неудачным, корректируют его соответствующим образом, повторяя вулканизацию по новому режиму и производя температурные замеры. Если при назначенном режиме по температурным замерам достигаются удовлетворительные результаты, вулканизуют по этому режиму серию изделий для лабораторных и станочных испытаний. Для проведения расширенных лабораторных механических испытаний из свулканизованного изделия заготавливают образцы, проверяя прежде всего показатели, записанные в нормах ГОСТ и ТУ на изделия. [c.291]

    Моторный метод оценки механической стабильности автомобильных масел (СЕС L-16-A-78) основан на проведении испытания масла в четырехтактном четырехцилиндровом двигателе Peugeot 204, имеющем общую систему смазки с коробкой передач (D = 75 MiM, S = 64 мм, е=8,8). Во время испытания (50 ч) двигатель работает с максимальной нагрузкой, частота вращения — [c.145]

    Чтобы сделать более понятным обсуждение методов испытаний (в следующем подразделе), здесь полезно дать общее описание процесса КР. Такая схема представлена на рис. Р. В левой части рисунка показана начальная стадия процесса. Даже не входя в детали понятно, что на этой стадии доминирующими обычно бывают химические и электрохимические факторы. При переходе к правой части рисунка характер разрушения становится смешанным электрохимическим и механическим, причем эти процессы могут находиться в различных соотношениях. В частности, илас-тичные материалы способны сопротивляться развитию трещины, притупляя ее вершину. В этих условиях локальное электрохимическое растворение, или питтииг, может вновь заострить вершину трещины, что приведет к новому приращению ее длины. Следует подчеркнуть, что подобное чередование шагов, которое должно происходить в определенной последовательности, может иметь место во многих случаях КР. Иногда, например в титановых сплавах, требуется предварительное образование острой усталостной тре- [c.48]

    Общие особенности конструкций. Метод свободнозатухающих колебаний, как правило, реализуется в виде крутильных (торсионных) маятников, которые широко вошли в практику исследований полимеров, начиная с работ Л. Нильсена (1951 г.) и К- Шмайдера и К. Вольфа (1952 г.). Эти приборы используются не только для измерений абсолютных значений параметров механических свойств пластмасс, но и в значительно большей степени для сравнительных испытаний и определения областей релаксационных переходов по температурной шкале, которым отвечают максимумы механических потерь или tgo. [c.175]

    Французская фирма "Пеко" разработала моторный метод оценки механической стабильности автомобильных масел, основанный на проведении испытания четырехтактного четырехцилиндрового двигателя Peugeot 204, имеющего общую систему,смазки с коробкой передач. Диаметр цилиндра двигателя - 75 мм, ход поршня - 64 ым, рабочий объем цилиндров - ИЗО см . Во время испытания (50 ч) двигатель работает с максимальной нагрузкой 4100 об/мин, расход бензина (с октановым числом по исследовательскому методу 98) составляет 14,5 л/ч, температура масла и охлаждающей жидкости на выходе из двигателя II0-II5 и 85°С, соответственно. Перед испытанием в картер двигателя заливают 4,1 кг масла расход масла за время испытания не должен превышать 1,5 кг. Пробы масла (по 60 см ) отбираются через 5, 10 20,-40 ч работы двигателя и перед его остановкой (50 ч). Перед определением вязкости работавшие масла выдерживают в токе азота в течение 45 мин. при 100-И0°С. Вязкость определяется при 99°С. Через каждые четыре испытания на двигателе заменяют поршни, поршневые кольца и кольца цилиндров. Это обеспечивает хорошую сходимость между результатами повторных испытаний масел. Из сравнения результатов оценки моторных масел по методике фирмы "Пежо" и результатов эксплуатационных испытаний следует, что снижение вязкости масла вследствие механической деструкции полимерных присадок, наблюдаемое в условиях эксплуатации после 1000 км пробега автомобиля, достигается на двигателе Peugeot 204 за 10 ч. [c.7]

    Физико-химический анализ обуглероженного слоя дает определенные сведения о свойствах материала, механизме абляции и механизме его разрушения . Элементарный химический анализ обуглившегося слоя показывает преимущественную потерю определенных элементов (см. рис. 2) и возможное осаждение углерода на стенках пор в результате термического разложения газообразных продуктов. Образование новых химических соединений, например карбида кремния, можно обнаружить методом дифракции рентгеновских лу-чей Общая пористость обуглероженного слоя определяет объем пустот, образующихся при высокотемпературном разложении 1шаст-массы, и косвенно отражает ее сопротивление воздействию механических сил. Распределение пор по размерам в обуглероженном слое показывает его склонность к растрескиванию и относительную эффективность теплообмена между раскаленным обуглероженным слоем и газами, образующимися в процессе абляции. Для определения структуры пор и характера взаимодействия между микрокомпонентами материала можно также использовать микрофотографирование в обычном и поляризованном свете . Очевидно, что для характеристики поведения и свойств пластмасс в газовых средах при высоких температурах необходима как качественная, так и количественная информация . Объем и степень достоверности информации, необходимой для оценки эксплуатационных свойств материалов, зависит от методов и условий испытаний. [c.430]

    Сущность метода возвратной работы состоит в том, что две однотипные электрические машины, соединенные электрически и механически друг с другом, работают так, что одна из них, работающая в режиме генератора Г (рис. 106), отдает всю выработанную ею электрическую энергию второй машине, работающей в режиме электродвигателя Д, а последняя расходует всю механическую энергию на вращение первой машины Г. Электрическая энергия внешней сети расходуется только на покрытие потерь в испытуемых машинах (25% их мощности). Машины механически соединяются полумуф-тами, надеваемыми на концы валов якоря, имеют общую электрическую цепь. Работа машин в режиме взаимной нагрузки возможна при условии, когда электродвижущая сила (э. д. с.) в цепи генерато.ра больше, чем э. д. с. в цепи двигателя. Необходимый избыток э. д. с. создается вольтодобавочной машиной ВДМ), включенной последовательно в цепь якоря генератора Г так, чтобы их э. д. с. имели одно направление. ВДМ приводится во вращение асинхронным двигателем Д, а ее обмотки возбуждения питаются от внешнего источника тока через потенциометр или резистор Я1. Если при неподвижных якорях машин замкнуть цепь ВДМ и поднимать подводимое к ее обмоткам возбуждения напряжение, в цепи испытуемых машин появится и будет нарастать ток. Однако вследствие встречного направления и равенства моментов на валах машин якори останутся неподвижными. Чтобы они начали вращаться, необходимо сообщить двигателю избыточный момент, который должен компенсировать тормозной момент, возникающий в обеих испытуемых машинах от механических, магнитных и добавочных потерь. Такой избыточный момент создается за счет электрической энергии, подводимой к двигателю от линейного генератора ЛГ. Последний приводят во вращение тем же асинхронным двигателем, что и ВДМ, а напряжение регулируют с помощью резистора или потенциометра в цепи его обмотки возбуждения. Для испытаний включают линейный генератор ЛГ, устанавливают на машине Д номинальное напряжение. Нагрузку регулируют изменением возбуждения вольтодобавочной ма- [c.227]


Смотреть страницы где упоминается термин Методы механических испытаний общие: [c.6]    [c.214]    [c.78]    [c.123]    [c.292]    [c.142]    [c.140]    [c.385]   
Механические испытания каучука и резины (1964) -- [ c.13 , c.14 , c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте