Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий. Галлий. Индий

    Существенную роль имеет также широкое распространение металлов в литосфере и гидросфере Земли. Металлы составляют 86% известных химических элементов. К металлам относятся 8-элементы, кроме водорода и гелия, все -элементы, все /-элементы, часть р-элементов (алюминий, галлий, индий, таллий). [c.4]

    БОР, АЛЮМИНИИ, ГАЛЛИЙ, ИНДИЙ, ТАЛЛИЙ [c.234]

    РАБОТА № 39. АЛЮМИНИЙ. ГАЛЛИЙ. ИНДИЙ [c.185]

    Элементы главной подгруппы третьей группы — бор, алюминий, галлий, индий и таллий — характеризуются наличием трех электронов на внешней электронной оболочке атома. [c.395]


    Амфотерными свойствами обладают оксиды и гидр,оксиды бериллия, алюминия, галлия, индия, олова (И, IV), свинца (II, IV), цинка [c.240]

    При обработке оксидов кислотами-неокислителями переходят в раствор в виде катионов только оксиды алюминия, галлия, индия и таллия  [c.200]

    I ИА-группу периодической системы элементов составляют бор, алюминий, галлий, индий и таллий. Их атомы отличаются числом внутренних электронных уровней, но имеют одинаковую электронную конфигурацию наружного уровня — [c.170]

    В подгруппе бора (валентность центрального атома 3) оксид и гидроксид имеют слабокислый характер (малый радиус) алюминия, галлия, индия — амфотерный характер (средний радиус) таллия — основной (большой радиус). [c.98]

    Гибридизация характерна для атомов с конфигурацией 5 р, т. е. для атомов ЗА-подгруппы (бор, алюминий, галлий, индий, таллий). Состояние 5 р —> <7 в этом случае молекулы имеют треугольную форму три связи направлены к углам треугольника из его центра (рис. 62, б). [c.113]

    На основании структуры электронной оболочки атомов к металлам относят 5-элементы, кроме водорода и гелия все -элементы, все /-элементы и 4 р-элемента алюминий, галлий, индий и таллий. [c.215]

    В эту подгруппу входят бор, алюминий, галлий, индий и таллий — это первая подгруппа р-элементов. , [c.433]

    Соединения бора, алюминия, галлия, индия и таллия [c.441]

    К главной подгруппе И1 группы относятся бор, алюминий, галлий, индий и таллий. Наружный энергетический уровень атомов этих элементов имеет конфигурацию ns np, поэтому в возбужденном состоянии валентность их равна 3. [c.259]

    Главную подгруппу ТП группы (подгруппу бора) составляют элементы бор, алюминий, галлий, индий и таллий. Некоторые свойства этих элементов приведены в табл. 6.3. [c.180]

    Элементы бор, алюминий, галлий, индий и таллий. Строение их атомов и внешняя электронная оболочка. Отличие бора от других элементов группы. [c.219]

    Этот же принцип Д. И. Менделеев строго соблюдает и внутри каждой группы при расположении элементов главных подгрупп и переходных металлов. Действительно, наиболее электроположительные металлы располагаются в I группе слева от более электроотрицательных меди, серебра и золота. Во П группе щелочноземельные металлы с ярко выраженными электроположительными свойствами располагаются слева от заметно более электроотрицательных элементов подгруппы цинка. В П1 группе слева Д. И. Менделеев располагает скандий, иттрий и лантан, обладающие типичными металлическими свойствами, а справа — амфотерные, значительно более электроотрицательные элементы подгруппы бора алюминий, галлий, индий и таллий. В IV группе на том же основании подгруппа титана располагается слева от подгруппы углерода. Во всех остальных группах подгруппы переходных металлов находятся слева от неметаллических элементов главных подгрупп. [c.78]


    Алюминий — основной представитель металлов главной подгруппы III группы периодической системы химических элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп А1. Свойства аналогов алюминия — галлия, индия и таллия — во многом напоминают свойства алюминия. Этому причина — одинаковое строение внешнего электронного слоя элементов — s p, вследствие которого все они проявляют степень окисления +3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента — алюминия и его соединений. [c.150]

    Б периоде слева направо энергия ионизации в общем возрастает, восстановительная активность (способность терять электроны) уменьшается. Наблюдающиеся небольшие отклонения обусловлены устойчивостью наполовину или полностью заполненных подуровней. У бериллия и магния заполнены 2з- и 35-подуровни, у азота и фосфора наполовину заполнены 2р- и Зр-подуровни эти элементы имеют энергию ионизации больше, чем следующие за ними. Появляющийся во внешнем р-подуровне один электрон у бора, алюминия, галлия, индия и таллия легче отрывается, чем электрон у предшествующих им элементов. Повышенные потенциалы ионизации цинка, кадмия и ртути — следствие того, что у них достроен внешний з-подуровень и полностью заполнен предпоследний подуровень й ( ). [c.80]

    ША-группу периодической системы Д. И. Менделеева составляют бор, алюминий, галлий, индий и таллий. Все они являются р-элементами, так как их атомы содержат на внешнем энергетическом уровне по три электрона в состоянии s p. При незначительной затрате энергии осуществляется переход Поэтому элементы ША-группы образуют соединения, в которых проявляют степень окисления +3 (бор также и —3) и +1, хотя для таллия более устойчивой является степень окисления +1. [c.211]

    Оксиды и гидроксиды алюминия, галлия, индия амфотерны, а оксиды таллия —ТЬО и ТЬОз —характеризуются только основными свойствами. Из металлов данной подгруппы галлий и индий имеют кристаллические решетки, обычно не свойственные металлам (галлий — ромбическую, индий — тетрагональную). При этом у галлия в узлах решетки находятся не отдельные атомы и ионы, а двухатомные молекулы Оаа, для разрушения которых нужна незначительная энергия галлий плавится при 30 °С. В расплавленном состоянии двухатомные молекулы галлия частично диссоциируют, появляются и отдельные атомы и ионы, связанные друг с другом металлической связью. Поэтому электрическая проводимость жидкого галлия выше, чем у твердого металла. [c.433]

    Свойства алюминия, галлия, индия и таллия. Алюминий, галлий, индий и таллий — серебристо-белые, сравнительно мягкие и пластичные металлы. Плотность их возрастает от алюминия к таллию. Галлий в рассмат- [c.433]

    Элементы главной подгруппы третьей группы — бор, алюминий, галлий, индий и таллий — характеризуются наличием трех электронов п наружном электронном слое атома. Второй снаружи электронный слой атома бора содержит два электрона, атома алю-мииия — восемь, галлия, индия и таллия — по восемнадцать электронов, Важнейшие свойства этих элементов приведены а табл. 35. [c.629]

    ПОДГРУППА 111А БОР, АЛЮМИНИЙ, ГАЛЛИЙ, ИНДИЙ, ТАЛЛИЙ) [c.326]

    Электронные аналоги. Рассмотрение размещения электронов по уровням и подуровням оболочек атомов, выражаемого электронными формулами, показывает нам, что независимо от числа энергетических уровней размещение электронов по подуровням в наружных уровнях может быть аналогичным. Эта аналогия выражается одинаковыми электронными формулами наружных уровней. Так, например, размещение электронов на наружных уровнях атомов бора, алюминия, галлия, индия и таллия выражается соответственно электронными формулами 2s 2p 35 3p 4s 4p 5s 5,o и б5 6р а в атомах фтора, хлора, брома, иода и астата — формулами 25 2р 35ЧрЧзЧр" 58 5р и б5 6р Элементы, в атомах которых одинакова электронная конфигурация наружного уровня, называются электронными аналогами. У атомов ряда элементов понятие электронной аналогии распространяется и на преднаружный уровень. Так, например, электронная конфигурация атомов титана, циркония и гафния выражается формулами 4з 4р 4с1 5з и а атомов марганца, технеция и рения — 45 Чр 4 552 5s 5p 5d" 6s . Таким образом, электронные аналоги отличаются друг от друга числом энергетических уровней и сходны но конфигурации наружных уровней. [c.32]

    Щелочи взаимодействуют с некоторыми металлами / -семейства (алюминий, галлий, индий, свинец н др.) и -семейства (2п, Си, Ре и др.). На металлы 5-семейства [целочи не действуют (исключение — бериллий). [c.112]

    III группа, главная подгруппа бор, алюминий, галлий, индий, таллий. Это р-элементы, которые в свободвом состоянии представляют собой металлы (кроме бора). [c.229]

    Ковалентные нитриды и карбиды (бора и кремния), ионн о-к о в а-л е н т н ы е нитриды и карбиды (бериллия, алюминия, галлия, индия). Соединения BN, A1N, GaN, Si , В4С, В12С3 обладают высокой утойчивостью к действию воды, кислот и щелочей. Некоторые из них отличаются исключительной твердостью, например Si — карбид кремния, имеющий кристаллическую решетку типа алмаза и исключительную твердость. [c.243]


    Главную подгруппу III группы периодической системы составляют бор, алюминий, галлий, индий и таллий. Электронные конфигурации этих элеменюв приведены в табл. 1, все они имеют на последнем энергетическом уровне по три электрона (в нормальном состоянии — два электрона на s-орбитали в один электрон на / -орбитали). Такое распределение электронов обусловливает возможность для указанных элементов проявлять в своих соединениях переменную валентность. [c.329]

    Алюминий, галлий, индий и таллий — типичные металлы бор — типичный неметьлл, по своим химическим и физическим свойствам он похож на углерод и кремиий и существенно отличается от элементов III группы. [c.330]

    Алюминий, галлий, индий и таллий химически активны и образуют многочисленные соединения. По мере увеличения порядкового номера металлические свойства увеличиваются так, если гидроокись алюминия обладает ярко выраженными амфогерными свойствами (см. 2, 3, гл X), то амфотерность гидроокисей галлия и индия проявляется намного слабее, а гидроокись таллия амфотерных свойств вообще не проявляет. Все эти элементы сходны по своим физико-химическим свойствам (окислы и гидроокиси амфотерны, способность солей к сильному гидролизу и т. д.), все элементы в чистом виде, а также их сплавы и соединения находят разнообразное применение и широко используются в современной технике. [c.330]

    Элементы бор, алюминий, галлий, индий и таллий составляют IIIA группу периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится по 2s- и 1 р-электрону, что выражается формулой s p . В нормальном состоянии атомы этих элементов содержат только по одному непарному р-электрону, но так как при очень незначительной затрате энергии один из s-электронов возбуждается и переходит на энергетический подуровень р, то энергетическое состояние возбужденных атомов можно выразить формулой s p . В этом состоянии все три электрона наружного энергетического уровня являются непарными. Поэтому все эдементы И1А группы образуют соединения, в которых их степени окисления равны -fl и +3. Однако соединения элементов с окислительным числом +1 устойчивы только у таллия, а у всех остальных элементов группы И1А неустойчивы. [c.198]

    Нитриды. Нитриды металлов (т. е. соединения с азотом электроположительных элементов) во многих отношениях сходны с силицидами. Их и делят обычно (Г. В. Самсонов) на ионные, ковалентные и металлоподобные, как это принято по отношению к силицидам. Металлы I и II групп, обладающие валентными s-электронами, образуют нитриды ионного типа, а алюминий, галлий, индий и т. п., для которых характерно наличие / -электронов на внешних оболочках, — нитриды ковалентного типа. Переходные металлы дают металлоподобные нитриды. Формально можно рассматривать нитриды первых двух типов как производные аммиака (LisN, K3N, AIN) — они действительно под действием воды разлагаются с выделением аммиака. Нитриды щелочных и щелочноземельных металлов неустойчивы (особенно во влажном воздухе). Нитриды алюминия и бора с кислотами практически не реагируют. Нитрид бора BN — боразон — отличается исключительной твердостью (близок по твердости к алмазу) и термостойкостью — выдерживает температуры до 2000°С. [c.293]

    Сульфиды алюминия, галлия, индия и таллия солеобразны. Сульфид алюминия АЬБз в воде полностью гидролизуется  [c.409]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]


Библиография для Алюминий. Галлий. Индий: [c.4]    [c.435]    [c.362]   
Смотреть страницы где упоминается термин Алюминий. Галлий. Индий: [c.133]    [c.472]   
Смотреть главы в:

Лабораторные работы по общей и неорганической химии -> Алюминий. Галлий. Индий

Лебораторные работы по общей и неорганической химии Изд.2 -> Алюминий. Галлий. Индий




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы

Индий

Индит



© 2025 chem21.info Реклама на сайте