Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Практическое значение солюбилизации

    Значение мицеллярных растворов ПАВ для биологических систем и практики определяется главным образом способностью мицелл солюбилизировать различные вещества. Кроме того, в настоящее время мицеллы рассматривают как модели биологических мембран благодаря сходству некоторых свойств структуры мембран и мицелл. Мицеллы солей желчных кислот играют важную роль в транспорте и адсорбции липидов, являются солюбилизаторами холестерина, обеспечивают вывод лекарств из организма. Примеры практического применения мицелл ПАВ многообразны. Мицеллярные системы обладают сильным моющим действием. При сухой химической чистке происходит солюбилизация обратными мицеллами полярных загрязнений с тканей прямыми мицеллами солюбилизируются жирные углеводородные загрязнения, на чем основано моющее действие ПАВ. [c.445]


    И. Какое явление называют солюбилизацией Чем обусловлено это явление Каково практическое значение этого явления  [c.155]

    СОЛЮБИЛИЗАЦИЯ (коллоидное растворение) — самопроизвольный переход в раствор нерастворимых или малорастворимых веществ под действием по-верхностно-актнвных веществ, незначительные количества которых имеюпся в растворителе. К веществам, способствующим С., относятся длинноцепочечные гомологи органических соединений — мыла и аналогичные им по строению синтетические поверхностно-активные вещества, образующие в растворах мицеллы. Большое практическое значение имеет С. в технологии эмульсолов, смазок, в производстве синтетических noJmMepoB методом эмульсионной полимеризации, при усвоении жиров организмами при помощи желчи, содержащей поверхностно-активные вещества, при введении в организм противоряко-вых полициклических препаратов и др. [c.232]

    ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ СОЛЮБИЛИЗАЦИИ [c.85]

    Солюбилизация в белковых системах в настоящее время изучается многими исследователями [98—101 ], однако многие закономерности этого явления изучены недостаточно, между тем они имеют большое теоретическое и практическое значение. Так, результаты исследования солюбилизации в белковых системах позволяют получить новые данные о строении макромолекул белка и о механизме важнейших биологических процессов в организме, к которым относится прежде всего обмен веществ. [c.22]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]


    Строят график зависимости п = 1(У). Получают кривую с изломом, после которого значения п практически не изменяются вследствие достижения предельной солюбилизации. Находят среднее значение п для точек, лежащих за изломом кривой (на горизонтальном участке). Используя по--лученное усредненное значение показателя преломления растворов, по формуле (134) рассчитывают объем углеводорода Уу, солюбилизированного до насыщения. Значения функ- [c.187]

    Однако еще заметнее, чем в случае эмульгаторов, влияние pH сказывается на действии регуляторов или модификаторов — веществ, которые определяют степень полимеризации при эмульсионной сопо-лимеризации бутадиена со стиролом. Наличие регулятора суживает интервал распределения величин молекулярных весов в конечном продукте и снижает долю полимера с очень высоким молекулярным весом. Особенно широко в качестве регуляторов используются алифатические меркаптаны с алкильными радикалами Q—Gjg. Так как они не растворимы в воде и, следовательно, практически не влияют на солюбилизацию, очевидно, что роль их в процессе полимеризации не связана с поверхностной активностью. По современным представлениям, регулирующее действие объясняется тем, что меркаптаны способствуют обрыву реакционных цепей, причем, как полагают, агентами, обуславливающими обрыв цепи, являются не углеводородные радикалы, а группы SH. Реакции, вызывающие обрыв цепей, локализуются, как и сам процесс полимеризации, в масляной фазе, которая находится в солюбилизированном состоянии в мицеллах мыла. Поэтому интенсивность регулирующего действия определяется сравнительной скоростью диффузии мономера и регулятора из эмульгированных капель масла внутрь мицелл. В свою очередь скорость диффузии регулятора определяется его молекулярным весом, т. е. размерами углеводородных цепей его молекул, причем цепи g— g проявляют в производственных условиях оптимальное регулирующее действие. Высокое значение pH среды благоприятствует образованию меркап-тидных анионов, которые в этих условиях быстрее диффундируют через водную среду в мицеллы, вследствие чего pH оказывает заметное влияние на регулирующее действие [39]. [c.505]

    По растворимости в воде мономеры можно разделить на три группы сравнительно хорошо растворимые, в этом случае роль эмульгатора сводится к стабилизации частиц образующегося полимера, малорастворимые (1—3%) и практически нерастворимые. К- последней группе относятся бутадиен, изопрен, стирол и т. п., поэтому при их полимеризации в эмульсиях большое значение имеет солюбилизация, или мицеллярная растворимость (в %)  [c.320]

    Действительно, если контролировать солюбилизацию мембранных фосфолипидов детергентами с помощью высокочувствительных методов, можно убедиться, что повышение концентрации детергента экстрагирует из нативной мембраны все имеющиеся там липиды с одинаковой скоростью, не различая прочно связанные (аннулярные) и свободные липиды (рис. 19). Более того, использование спин-меченых фосфолипидов в процессе реконструкции различных мембранных ферментов позволило измерить скорость обмена молекул фосфолипидов между аннулярным слоем и окружающими липидами. Для разных белков обнаруживается своя доля иммобилизованного липида. По вытеснению метки из аннулярного слоя при добавлении немеченого липида можно определить сродство каждого липида к поверхности белка. Характерно, что значения стехиометрии связывания белком пограничных липидов, измеренные этим методом и рассчитанные из геометрических размеров молекулы белка, практически совпадали. [c.43]

    Явление прямой и обратной солюбилизации (углеводородов в воде и воды в углеводородах) в присутствии достаточных количеств мылообразных поверхностно-активных веществ, а также переход от одного типа соответствующих систем к другому с обращением фаз свидетельствуют о двухфазном характере минеральных растворов мыл. Вместе с тем эти явления имеют важное практическое значение, так как на них основаны процессы полимеризации и сополимеризации в эмульсиях с получением синтетических латексов — дисперсий полимеров, удобных для переработки в изделия. Обратная солюбилизация воды в маслах (в присутствии соответствующих коллоидно-растворимых в масле поверхностно-активных веществ со смещением баланса в сторону гидрофильных групп) имеет большое значение в пищевой промышленности. В производстве маргариновых эмульсий, например, такая солюбилизация воды может резка улучшить свойства маргарина, препятствуя разбрызгиванию при жарении вследствие испарения крупных капелек эмульгированной воды. [c.58]

    Наиболее удобным для определения ККМ является твердый краситель, нерастворимый в воде. После седиментации красителя величину солюбилизации определяют по измерениям светопогло-щения растворов с помощью спектрофотометра или колориметра. Растворимость углеводорода или красителя остается практически постоянной до тех пор, пока концентрация ПАВ не достигнет ККМ, и далее очень быстро увеличивается, вначале почти линейно. Значение ККМ, определенное таким способом с помощью солюбилизации, ниже значений, полученных измерениями других физико-химических характеристик, из-за присутствия добавок углеводорода или красителя. Этот метод применим как для водных растворов неионогенных ПАВ [45, 53], так и для их неводных растворов [54—62]. [c.20]


    Полимерные поверхностноактивные вещества по своей солюбилизирующей способности практически не менее эффективны, чем неполимерные. Так, например, одинаковое солюбилизирующее действие по отношению к изооктану проявляют поливинилпиридин, переведенный взаимодействием с додецилбромидом в четвертичное производное, и додецилпиридинийбромид [162]. Солюбилизирующая способность растворов таких полимыл не увеличивается с возрастанием концентрации, поскольку полимыла не образуют мицелл. При солюбилизации углеводородов имеет значение только размер их молекул (солюбилизация понижается с увеличением молекулярного веса), степень же их разветвленности не оказывает существенного влияния. Результаты определений вязкости таких систем свидетельствуют о том, что в присутствии солюбилизированного углеводорода свернутая полимерная цепь стремится сократиться [1631. [c.319]


Смотреть страницы где упоминается термин Практическое значение солюбилизации: [c.234]    [c.281]    [c.22]    [c.22]    [c.12]    [c.13]    [c.350]   
Смотреть главы в:

Практикум по коллоидной химии поверхностно-активных веществ -> Практическое значение солюбилизации




ПОИСК





Смотрите так же термины и статьи:

Солюбилизация



© 2025 chem21.info Реклама на сайте