Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологические превращения модели

    Ранее уже указывалось, что ферменты — это белки, выполняющие роль катализаторов в биологических реакциях. Необходимость таких катализаторов станет очевидной, если вспомнить, что температура тела равна 37°С, а многие органические реакции протекают только при более высоких температурах. Интересно было бы понять, каким образом ферменты осуществляют свои каталитические функции. Установление точного механизма действия ферментов составляет фундаментальную проблему биоорганической химии. Большая часть превращений происходит на поверхности белкового катализатора на участке, обозначаемом как активный центр, где химические превращения следуют основным закономерностям органической и физической химии. При этом одновременно действуют несколько факторов, которые следует ограничить и исследовать отдельно с помощью специальных моделей. Однако, чтобы оценить каталитическое превращение реагента (субстрата) в продукт реакции, необходимо общее представление о таком явлении, как катализ. Субстратом обычно называют химическое вещество, превращение которого катализирует фермент. [c.189]


    Разработка математических моделей биореакторов является наиболее важной задачей при оптимизации БТС. От эффективности функционирования биореактора, обеспечивающего превращение исходных веществ в продукты микробиологического синтеза, зависят технико-экономические показатели производства в целом. Важно отметить сложность задачи моделирования процессов в биореакторе, где на явления биологической и биохимической природы накладываются физические и физико-химические явления, связанные с переносом вещества и энергии. Рассмотренные ранее принципы системного анализа сложных систем в полной мере применимы и к моделированию процессов в биореакторе, который можно представить в виде многоуровневой иерархической системы [13 . [c.136]

    Превращение А в В может совершаться и под действием катализатора. В биологических системах так оно и происходит и поэтому для углубления аналогии между клеточной структурой и этой примитивной моделью надо представлять себе, что в пространстве между мембранами находится и некоторый катализатор, ускоряющий реакцию А В. [c.193]

    Разрабатываемые в настоящее время представления о структурной модели воды, причинах ее аномалий и роли ее фа юво-агрегатных превращений для познания физических, химических и биологических явлений, происходящих в водной среде [ИЗ—П5], могут в определенной степени уточнить и углубить теоретические аспекты, положенные в основу изложенных представлений. [c.52]

    Конечно, предстоит еще большая работа по разработке физических моделей внутримолекулярной динамики макромолекул. Однако уже сейчас ясно, что принцип ЭКВ позволяет с единых общенаучных позиций рассмотреть функционирование различных молекулярных машин, казалось бы, далеких друг от друга по своей биологической роли. Специфика и общность молекулярных механизмов фотобиологических процессов состоит в том, что первичный фотофизический акт использования энергии электронного возбуждения хромофора происходит при непосредственном участии его белкового окружения и ведет к созданию локального конформационно-напряженного состояния. Это состояние затем распространяется на всю макромолекулу, причем возникающие функционально значимые изменения есть результат конформационных превращений в белковой части фоточувствительного хромопротеина. [c.12]

    Между первичными фотобиологическими превращениями в хромопротеине и внутримолекулярными превращениями в фермент-субстратных комплексах нет принципиальной разницы. Концепция внутримолекулярных ЭКВ привлекается сейчас и для объяснения молекулярных механизмов работы АТФ-синтетазы, а также переноса ионов через биологические мембраны. Это еще раз иллюстрирует плодотворность биофизического метода анализа и построения обобщенных моделей физических взаимодействий, которые лежат в основе явлений, разных в биологическом отношении, но родственных между собой по глубинным молекулярным механизмам. [c.12]


    Сложный процесс в биологической системе обычно имеет характер многоступенчатых превращений и может рассматриваться как совокупность отдельных стадий (элементарных звеньев), образующих сетку сопряженных последовательных, параллельных и/или циклических реакций. В основе совокупности процессов в целостной клетке или организме лежат кинетические относительно простые биохимические реакции и физико-химические процессы, для которых справедливы основные законы физической химии. В частности, скорости каждой из реакций существенно зависят от условий ее протекания температуры, pH, свойств катализаторов реакций и т. п. В такой постановке описание кинетического поведения сложной системы сводится к построению и анализу математической модели, в которой скорости количественных изменений различных составных компонентов были бы выражены через скорости отдельных элементарных реакций их взаимодействия. Ясно, что построение адекватной модели возможно лишь с привлечением конкретных данных и представлений о механизмах сложных биологических процессов, что и достигается лишь на определенном уровне исследования. [c.16]

    Так, математические модели биохимических циклов метаболизма основаны на детальном знании последовательности превращений веществ и оценке экспериментальных значений концентраций и констант скоростей их взаимодействий. Самостоятельное изучение динамических свойств моделей позволяет сделать заключение об особенностях функционирования исходной биологической системы. [c.16]

    Рассмотрим модели, где переменные изменяются не только во времени, но и в пространстве. В отличие от точечных такие модели называются распределенными (в пространстве). В распределенных системах могут протекать в отдельных точках пространства химические превращения веществ и одновременно происходить диффузия отдельных веществ из элементарных объемов с высокой концентрацией в объемы с меньшей концентрацией. Таким образом, связь между соседними элементарными объемами осуществляется за счет процессов переноса. В биологических системах (активные мембраны, ткани, сообщества организмов) также существуют и распределенные источники энергии. Часть этой энергии диссипирует в элементарных объемах системы. Такие системы относятся к активным распределенным системам. [c.46]

    Таким образом, темпы утилизации вещества и энергии (или темпы возникновения, появления веществ, аналогичные этим темпам) играют особую роль в компартментальных моделях биологических систем. Именно они выступают в качестве первичных темпов, определяющих потребности живых систем. Рассмотренные же в двух предыдущих разделах процессы транспорта и процессы превращения компонент чаще всего выступают в роли генератора вторичных темпов. Изучение соотнощения между первичными и вторичными темпами лежит в основе компартментального моделирования. Мы поэтому постараемся представить схему компартментальной модели общего вида в такой форме, чтобы первичные и вторичные темпы процессов в ней были основными элементами структуры. [c.182]

    Химические реакции в живых организмах отличаются от обычных реакций двумя особенностями сложностью механизмов и высокой эффективностью. Белковое окружение часто приводит к более быстрому и специфичному превращению функциональных групп по сравнению с обычными молекулами. В силу большого размера биологически активных молекул расчет полных поверхностей потенциальной энергии и точное решение задач квантовой динамики ядер для этих молекул невозможны, поэтому актуальна задача разработки моделей внутримолекулярной динамики. Эти модели должны быть достаточно простыми для того, чтобы допускать разумное численное решение, но в то же время достаточно развитыми для того, чтобы отражать основные аспекты биохимических превращений. [c.158]

Рис. 3.3. Биологические превращения для двухсубстратной модели. Эта схема может использоваться для описания обычного реактора с активным илом, реакторов нитрификации и денитрификации, а также анаэробных реакторов. Трехсубстратная модель применима, в частности, для описания процесса биологического удаления фосфора. Рис. 3.3. <a href="/info/231251">Биологические превращения</a> для двухсубстратной модели. Эта схема может использоваться для описания обычного реактора с <a href="/info/24779">активным илом</a>, <a href="/info/231486">реакторов нитрификации</a> и денитрификации, а также <a href="/info/231235">анаэробных реакторов</a>. Трехсубстратная <a href="/info/330256">модель применима</a>, в частности, для описания <a href="/info/1557517">процесса биологического удаления</a> фосфора.

    Биохимические процессы. Эта группа процессов представляет собой наиболее сложную стохастико-детерминированную систему, осложненную биологической кинетикой, т. е. описанием явлений развития популяций живых клеток. Поэтому математическое оп1Ь еание должно быть дополнено соотношениями, определяющими кинетику их роста. Поскольку в настоящее время отсутствует достоверное описание внутриклеточных явлений, то при моделировании биохимических процессов чаще всего используются обобщенные кинетические модели роста популяции микроорганизмов, формируемые на основе приближенных моделей роста единичной клетки, транспортирования и превращения субстрата в клетке, физио-лого-биохимической или возрастной модели клеток [1, 50]. [c.137]

    В начале 60-х годов, когда я работал в университете в Оттаве, мои коллеги по химическому факультету сходились во мнении, что будущее органической химии помимо усовершенствования теоретических иредставлеппй лежит в решении биохимических проблем. Поэтому я приступил к подготовке лекций по общей биохимии, специально предназначенных для студентов-химиков старших курсов, не имеющих подготовки в области классической, описательной биохимии. В методическом отношении я положил в основу своих лекций изучение тех химических реакций, которые наилучшим образом отра кают соответствующие биохимические превращения. Следует заметить, что в этот период эффективное химическое моделирование ферментативных реакций только еще начинало развиваться заметных успехов в разработке биомоделирующих систем удалось добиться в последние 15 лет. Я как лектор был приятно удивлен значительным увеличением числа студентов старших курсов, специализирующихся в области биохимии и биологии, так что иногда они по численности превосходили студентов-химиков. Выпускники-биохимики, как оказалось, обнаружили, что полученные ими знания недостаточны для работы и что гораздо легче осмыслить фундаментальные общие биохимические концепции, используя подходящие модели. В 1971 г. я перешел работать в университет Мак-Гилла к этому времени лекции постепенно оформились в самостоятельный курс, называемый в настоящее время биоорганической химией этот курс читается студентам-выпускникам биологических специальностей последние 10 лет. Большое число слушателей на лекциях еще раз подтверждает необходимость этого курса. [c.8]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Выделение различных типов ротационно-кристалллического состояния оказалось возможным благодаря тому, что каждое из них индивидуально проявилось в рентгендифракционных признаках, установленных при прецизионном изучении в функции от температуры структурных деформаций, полиморфных превращений и изоморфных замещений н-парафинов (п=17-24) высокой степени гомологической чистоты (97-99 %), их разнообразных сплавленных смесей известного молекулярного состава в бинарных и тройных системах, а также многочисленных поликомпонентных смесей (и=17-41) геологического, биологического и технологического происхождения. Эти же признаки явились аргументами в пользу динамической модели строения ротационных кристаллов в чистом виде или в ее различных сочетаниях со статической моделью. [c.307]

    Окисление первичных аминов до кетонов. Кори и Ахива [2 разработали препаративный метод осуществления указанного превращения, являющегося моделью биологического переаминирова-ния, которое включает образование и гидролиз оснований Шиффа. Обычно первичные амины вступают в реакцию сопряженного присоединения с хинонами, однако в случае Д. (I) эта реакция подавляется объемными трйт-бутильными группами. Поэтому реакция первичных аминов с этим хиноном приводит сначала к основанию Шиффа (3), которое путем прототрошюй перегруппировки изомери-зуется в (4). При кислотном гидролизе соединение (4) расщепляется с образованием карбонильного соединения (5) и (6). Обычно, чтобы прошла реакция, раствор (1) и (2) в метаиоле оставляют при комнатной температуре на 20—30 мин (если необходим сорастворитель, используют ТГФ), затем проводят гидролиз, добавляя щавелевую кислоту. Выходы обычно высокие (90% и выше). [c.59]

    Если же выполняется исследование с РФП, обеспечивающим суждение о каких-либо метаболических превращениях, в интерпретации результатов необходимо учитывать возможность преобразования одной химической формы или состояния исследуемого вещества в другую. Здесь важна также полнота понимания принципов кинетики индикатора как в свете предпосылок об устойчивом равновесии исследуемой системной субстанции и радиоиндикатора, так и о возможности создания в последней и крови его радиоактивных метаболитов. В таких ситуациях используется математическое моделирование исследуемых процессов. В сущности, под кинетикой индикатора понимается математическое описание движения РФП в пределах исследуемой системы (Коерре А. — 1966). В радионуклидной диагностике получило большое распространение камерное моделирование биологической системы в виде комбинации камер с достаточно жёсткой предпосылкой, что каждая из них является отдельным гомогенным хорошо перемешиваемым компонентом этой системы (Godfrey К. — 1983). Немаловажна роль и циркуляционных моделей. [c.313]

    Открытие в 1950-е годы биологической активности у ряда поли-ацетиленовых соединений вызвало повышенный интерес к исследованию их химических превращений, которые рассматриваются как простейшие модели некоторых природных процессов. Кроме того, разработка, методов получения полиинов открывает возможности синтеза антибиотиков и других веществ с бактерицидными свойствами [434—436]. [c.92]

    В зависимости от условий протекания процесса в системе используют различные функции состояния, которые выводят из 1-го начала термодинамики. При этом вместо сложных биологических систем для получения выводов о превращениях массы и энергии используют упрощенные модели. Так, например, термодинамические процессы при совершении работы поднятия груза человеком (см. рис. 1.3,а) можно смоделировать с помощью цилиндра с поршнем (рис. 1.3,6). В цилиндре окисляется глюкоза, и выделяющиеся углекислый газ и вода совершают работу, поднимая поршень с грузом. Давление в системе при этом поддерживается постоянным, оно равно внешнему давлению. Такие процессы, протекающие при р = onst, называются изобарными. Работа расширения, совершаемая при изобарном процессе, как известно, равна [c.15]

    Настоящий симпозиум является одним из первых опытов такого-типа. Тема симпозиума Кинетика и механизм образования и превращения макромолекул выбрана потому, что эта область сейчас быстро развивается и изменяется. Ко времени проведения симпозиума широкое развитие ползгчили такие направления полимерной химии, как стереоспецифическая полимеризация, сополимериза-ция с нестатистическим распределением звеньев в цепи макромолекул, привитая и блоксополимеризация и т. д. Возникло большое количество полимерных материалов, свойства которых отличаются не только вследствие химического состава использованных мономеров, но и из-за различий в строении полимерных цепей. Химический состав мономеров также все время усложняется. Сейчас имеются реальные попытки создания моделей биополимеров, полимеров с биологически и химически активными звеньями и т. п. [c.3]


Смотреть страницы где упоминается термин Биологические превращения модели: [c.295]    [c.76]    [c.523]    [c.680]    [c.523]    [c.445]    [c.270]    [c.83]    [c.210]    [c.17]    [c.74]    [c.17]    [c.155]    [c.210]   
Очистка сточных вод (2004) -- [ c.93 ]




ПОИСК







© 2024 chem21.info Реклама на сайте