Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы определения активности электролитов

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Опубликованные значения ДЯс относятся к растворам с ионной силой р. от О до 4. Во многих случаях теплота ДЯс была определена при высоких значениях л, поскольку при той же ионной силе была измерена и константа устойчивости. В обширных обзорах [5—8] обсуждаются способы определения концентрационных констант равновесия (т. е. констант равновесия в растворе, где л имеет постоянное значение, большее нуля) при высокой концентрации электролита, считающегося инертным (так называемый метод постоянной ионной среды). Многие исследователи пользовались этим методом при изучении равновесий в растворе с целью преодоления трудностей, связанных с определением коэффициентов активности и вычислением термодинамической константы равновесия (т. е. константы равновесия при л = 0). Значения концентрационных констант равновесия, которые можно определить в растворе с постоянной ионной силой, пригодны дтя сравнения с другими константами, найденными при той же ионной силе в присутствии того же самого электролита. Однако с помощью значений концентрационной константы равновесия, энтальпии или энтропии, найденных при высокой ионной силе, очень трудно определить значения, относящиеся к стандартному состоянию с х = 0. В то же время лишь такие стандартные значения можно сопоставлять с другими термодинамическими данными при изучении энергии химической связи и строения комплексов. Методу постоянной ионной среды, применяемому для определения ДЯс, присущи три основных недостатка 1) дополнительно вводимый электролит в какой-то мере препятствует сольватации ионов металла, лигандов и комплекса, за счет чего система [c.16]

    На основе способа контроля активности ферментов оксидаз специалистами Академии химической защиты был создан портативный экспресс-анализатор для контроля качества питьевой воды, а также опытный образец портативного анализатора жидких проб (ОСЕ-2). С помощью прибора, регистрирующего активность дыхания микроорганизмов (оксидаз) возможно определение общего микробного индекса в грунтовой электролите [c.48]

    Определение температур замерзания. Экспериментальные определения, необходимые для этого способа, достаточно просты и сводятся к измерениям температур замерзания растворов в зависимости от концентрации электролита. Заметим, что аналогичным способом часто вычисляют активности электролитов в расплавах по диаграммам плавкости. Задача упрощается в тех случаях, когда отсутствует растворимость в твердом состоянии (или очень мала), как это обычно и бывает ири замерзании водных растворов. Способ расчета был изложен ранее, в гл. IV. Особенности вычислений в случае растворов электролитов сводятся к учету того, что активность при разбавлении стремится к моляльности в степени, равной числу ионов, на которые распадается электролит. [c.219]


    На практике оказывается, что коэффициенты активности ионов никогда не входят по одному в уравнения, но всегда в некоторых сочетаниях (см. гл. 9). И действительно, даже отсутствуют такие способы для определения коэффициентов активности отдельных ионов, которые не вызывали бы сомнений. Если рассматривать электролит типа 1 — 1, например МаС1, то в уравнениях будет встречаться произведение с — В случае [c.154]

    Тип границы и диффузионный потенциал. Если соприкасаются два раствора, содержащие различные электролиты, то строение границы между ними и, следовательно, концентрации ионов в различных точках зависят от того способа, каким эти растворы приведены в соприкосновение. Очевидно, что числа1 переноса каждого вида ионов и до некоторой степени активность этих ионов существенно зависят от типа границы. Следовательно, диффузионный потенциал может изменяться в зависимости от типа жидкостного соединения. Однако если оба раствора содержат один и тот же электролит, то потенциал не должен зависеть от характера жидкостного соединения. В этом случае раствор в любой точке пограничного слоя будет состоять только из одного электролита, находящегося там в определенной концентрации таким образом, каждому виду ионов должны соответствовать определенные число переноса и активность. Поэтому результат интегрирования уравнения (42) не зависит от характера градиента концентрации в промежуточном слое между двумя растворами это теоретическое предположение было подтверждено опытом [13]. Действительно, диффузионный потенциал не зависит от строения границы, если с обеих ее сторон находится один и тот же электролит, и это обстоятельство делает возможным точные измерения э. д. с. [c.293]


Смотреть главы в:

Физическая химия -> Способы определения активности электролитов

Физическая химия -> Способы определения активности электролитов

Физическая химия изд №2 -> Способы определения активности электролитов




ПОИСК





Смотрите так же термины и статьи:

Активность электролитов

Определение ХПК активного ила

Электролиты определение



© 2025 chem21.info Реклама на сайте