Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды и строение биологических мембран

    В последние годы появилось много сведений о строении биологических мембран. Важные данные были получены отчасти благодаря биохимическим методам (выделение различных химических соединений из клеточных мембран), рентгеноструктурному анализу, электронному и ядерному магнитному резонансу, спектроскопии, но в основном благодаря применению электронного микроскопа. Клеточные мембраны, такие, как мембрана эритроцита, состоят из примерно равных коли честв липидов и белков. В них присутствует также небольшое количество (несколько процентов) полисахаридов, которые соединяются с полипептидными цепями с образованием гликопротеидов. [c.465]


    Опишите строение биологических мембран и специфические функции липид-, белок- и углевод-содержащих компонентов. В чем состоят различия между внутренней и наружной поверхностями мембраны  [c.398]

    Состав и строение биологических мембран. Биологические мембраны состоят из белков и липидов. Углеводы присутствуют лишь в качестве составных частей сложных белков (гликопротеинов) и сложных липидов (гликолипидов). Нуклеиновые кислоты в небольшом количестве бывают ассоциированы с мембранами, но в состав мембранных структур не включаются. Вода составляет 20% от мембранного материала, а отношение белок/липид в зависимости от вида мембран колеблется от 0,25 (клетки миелиновой оболочки) до 3,0 (митохондриальные мембраны). [c.298]

    При переходе от молекулярных систем к надмолекулярным структурам живых клеток и организмов мы встречаемся со специфическими проблемами физики конденсированных сред. Биологические мембраны, сократительные системы, любые клеточные структуры имеют высоко специализированное гетерогенное строение. Во всех функциональных надмолекулярных структурах определяющую роль играют белки, взаимодействующие с другими органическими молекулами (например, с липидами в мембранах) и с различными ионами, начиная с малых ионов щелочных и щелочноземельных металлов. В гетерогенных надмолекулярных системах реализуется специальное динамическое поведение, ответственное в конечном счете за важнейшие явления жизнедеятельности. Это поведение определяется особым состоянием биологических надмолекулярных систем. Мембраны имеют жидкое или жидкокристаллическое строение, белки плавают в липидном море . Сократительные белковые системы, ответственные за превращение химической энергии (запасенной преимущественно в АТФ) в механическую работу, т. е. системы механохимические, построены из различных фибриллярных белков, взаимодействующих друг с другом. Естественно, что внутримолекулярная и молекулярная подвижность, т. е. конформацион-ные движения, играют главную роль в динамике надмолекулярных структур. В конечном счете электронно-конформационные или ионно-конформационные взаимодействия лежат в основе всей клеточной динамики. [c.611]

    Все клетки, даже самые простые, имеют мембраны. Мембраны отделяют внутреннее содержимое клетки от окружающей среды, поэтому нарушение целостности мембраны приводит к гибели клетки. Мембраны не только сохраняют молекулы веществ, входящих в ее состав, но и реализуют специфику химического состава клеточной цитоплазмы. С помощью специальных устройств мембрана избирательно выбрасывает из клетки ненужные вещества и поглощает из окружающей среды необходимые. Главные компоненты биологических мембран живых организмов — это сложные липиды. Следует обратить внимание на то, что все сложные липиды, описанные в разд. 9, имеют характерное строение для поверхностно-активных веществ, т. е. две большие неполярные углеводородные группы и полярную часть, способную к образованию водородных связей. Таким образом, эти молекулы способны самопроизвольно агрегировать, образуя в воде бислойные структуры, составляющие основу мембраны. В состав мембранного бислоя входят и молекулы белков, и свободные жирные кислоты. Последние встраиваются в бислой так, что их жирные хвосты погружены внутрь, а полярные группы во внешнюю среду и контактируют с ионами натрия с внешней, а с ионами калия с внутренней стороны бислоя (см. рис. 73). Биологические мембраны не только регулируют обмен веществ в клетке, но и воспринимают химическую информацию из внешней среды с помощью специальных рецепторов. Биологические мембраны обеспечивают иммунитет клетки, нейтрализуя чужие и свои вредные вещества. Они также способны передавать информацию соседним клеткам о своем состоянии. Наконец, совсем недавно было обнаружено, что многие белки-ферменты могут работать только внутри мембраны, запрещая, разрешая или сопрягая ферментативные процессы. [c.407]


    Биологические мембраны построены в основном из белков, липидов и углеводов. В состав молекулы природных липидов входят полярная заряженная фосфатная головка и длинные углеводородные цепочки, принадлежащие жирным кислотам. В природных фосфолипидах жирные кислоты могут иметь ненасыщенные двойные связи в основном во втором положении глицеринового остатка. Белки могут пронизывать мембрану насквозь, а могут быть частично или целиком погружены в липидный слой. Взаимодействие с гидрофобными липидами осуществляется в основном неполярными аминокислотными остатками. Белки плавают в липидном слое мембраны в виде отдельных глобулярных частиц и обладают определенной подвижностью. Активность мембранных белков зависит от фазового состояния липидов и вязкости мембраны. На рис. 13.1 дана общая схема строения мембраны, состоящей из двойного липидного слоя с погруженными в него молекулами белка. Толщина биологических мембран обычно не превышает 100 А. [c.131]

    Первая модель строения биологических мембран была предложена в 1902 г. Было замечено, что через мембраны лучше всего проникают вещества, хорошо растворимые в липидах, и на основании этого было сделано предположение, что биологические мембраны состоят из тонкого слоя фосфолипидов. На самом деле, на поверхности раздела полярной и неполярной среды (например, воды и воздуха) молекулы фосфолипидов образуют мономолекулярный (одномолекулярный) слой. Их полярные " головы погружены в полярную среду, а неполярные хвосты ориентированы в сторону неполярной среды. Поэтому и можно было предположить, что биологические мембраны построены из монослоя липидов. [c.9]

    После гипотезы Даниэлли и Дэвсона предложены разнообразные модели строения биомембран. Развитие представлений о строении биомембран изложено в ряде обзоров (см., например, [227, 228]). Наибольшую популярность в настоящее время получила мозаичная модель биологической мембраны [229], согласно которой функциональные белки погружены и диффундируют в жидкообразном липидном бислое. Белок погружен в бислой таким образом, что полярные и ионизованные группы взаимодействуют с водой, а гидрофобные части — с углеводородными цепями липидов. [c.167]

    Однако мембрана - это не только липидный бислой. Имелись экспериментальные данные, которые свидетельствовали о том, что биологическая мембрана состоит и из белковых молекул. Например, при измерении поверхностного натяжения клеточных мембран было обнаружено, что измеренные значения коэффициента поверхностного натяжения значительно ближе к коэффициенту поверхностного натяжения на границе раздела белок-вода (около 10 Н/м), нежели на границе раздела липид-вода (около 10" Н/м). Эти противоречия экспериментальным результатам были устранены Даниелли и Девсоном, предложившими в 1935 г. так называемую бутербродную модель строения биологических мембран, которая с некоторыми несущественными изменениями продержалась в мембранологии в течение почти 40 лет. Согласно этой модели мембрана - трехслойная. Она образована двумя расположенными по краям слоями белковых молекул с липидным бислоем посередине образуется нечто вроде бутерброда липиды, наподобие масла, между двумя ломтями белка. [c.11]

    Строение биологических мембран. В настоящее врёмя наибольшим признанием пользуется жидкостно-мозаичная гипотеза строения биологических мембран. Согласно этой гипотезе основу мембраны составляет двойной слой фосфолипидов с некоторым количеством других липидов (галактолипидов, стеринов, жирных кислот и др.), причем липиды повернуты друг к другу своими гидрофобными концами. Ненасыщенные жирные кислоты полярных липидов обеспечивают несколько разрыхленное (жидкое) состояние бислоя при физиологических температурах. Этому же способствуют и стерины. Биологические мембраны уже по составу липидов построены асимметрично, так как две их стороны — наружная и внутренняя — обращены в качественно разные гидрофильные среды. В наружном слое плазмалеммы содержится больше стеринов и гликолипидов. [c.13]

    Унитарная модель не раз модифицировалась. В настоящее время наиболее правдоподобной представляется мозаичная модель мембраны, показанная ыа рис. 10.2. Билипидный слой фигурирует и в этой модели. Действительно, искусственные липидные мембраны, имеющие двуслойное строение, оказались во многих отношениях сходными с биологическими мембранами. Искусственные мембраны получаются при контакте смеси фосфолипидов и нейтральных липидов, растворенных в органических растворителях, с водой. При этом можно получить черные мембраны, т. е. тонкие слои, лишенные интерференционных цве- [c.335]

    Мембранология как самостоятельная наука, изучающая строение, свойства, механизмы функционирования биологических мембран, сформировалась сравнительно недавно (1950—1970 гг.). Однако сам термин мембрана используется вот уже почти 150 лет для обозначения клеточной фаницы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой — полупроницаемой перегородкой, через которую могут проходить вода и растворенные в ней вещества. Однако мембраны представляют собой не только статически организованные поверхности раздела. Быстрое развитие биохимии мембран и прежде всего широкое исследование мембранных белков и липидов обусловили прогресс в понимании структуры и функций биологических мембран. [c.301]


    В главах 12—15 освещаются вопросы обмена жизненно необходимых соединений, аминокислот, белков, углеводов, липидов, воды и минеральных веществ. В главе 12рассмотрен обмен белков и аминокислот, занимающий особое место в процессах метаболизма, что связано с уникальными биологическими функциями белков и специфической ролью аминокислот как основных источников азота для организмов человека и животных. Обмен углеводов обсуждается в главе 13. Известно, что углеводы занимают первое место среди веществ, служащих в качестве источника энергии для организма, а кроме того, они выполняют ряд других важных биологических функций. Обмен липидов описан в главе 14, особое внимание уделяется ряду специфических особенностей их метаболизма, связанных с химическим строением. Глава 15 посвящена рассмотрению процессов водно-минерального обмена и транспорта биологически активных соединений через клеточные мембраны, благодаря этим процессам поддерживается постоянство состава внутри- и внеклеточных жидкостей организма. [c.310]


Смотреть страницы где упоминается термин Липиды и строение биологических мембран: [c.217]    [c.343]    [c.179]    [c.47]   
Смотреть главы в:

Основы неорганической химии для студентов нехимических специальностей -> Липиды и строение биологических мембран

Органическая химия -> Липиды и строение биологических мембран




ПОИСК





Смотрите так же термины и статьи:

Липиды

Мембрана биологическая



© 2025 chem21.info Реклама на сайте