Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пигменты и зрение

    В процессах зрения участвуют светочувствительные пигменты, расположенные в сетчатке глаза (ретине). Из зрительных пигментов лучше всего изучен родопсин, являющийся у млекопитающих, в том числе и у человека, фоторецептором палочек сетчатки— клеток, ответственных за сумеречное зрение. Родопсин представляет собой комплекс гликопротеина опсина с 11-1<ис-ретина-лем. Связь осуществляется посредством образования основания Шиффа (57) между альдегидной группой ретиналя и аминогруппой остатка лизина в молекуле опсина. Несмотря на то что сам по себе ретиналь бесцветен [Хмакс 383 нм (в этаноле)], образование протонированного основания Шиффа (58) сопровождается резким батохромным сдвигом, и родопсин поглощает свет в видимой области ( макс 500 нм). Родственные комплексы ретиналя или [c.538]


    Соед. группы витамина А обладают разл. биол. активностью. Так, ретинол необходим для роста, дифференциации и сохранения ф-ций эпителиальных и костных тканей, а также для размножения (стимулирует образование спермы). Ретиналь играет важную роль в механизме зрения, образуя с белком опсином зрительный пигмент родопсин. Ретиноевая к-та в 10 раз активнее ретинола в клеточной дифференциации, но менее активна в процессах размножения. rii i недостатке витамина А в организме нарушается темповая адаптация, снижается сопротивляемость инфекц. заболеваниям и др. [c.383]

    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]


    При выборе катализатора учитывают его влияние на стабильность добавляемых в процессе поликонденсации дисперсий пигментов, например сажи при производстве окрашенного в массе черного волокна. С этой точки зрения определенные преимущества имеют катализаторы в виде гликолятов, например гликолят марганца [37]. При отсутствии в полимере электролита стабильность суспензий пигментов повышается. [c.63]

    Теоретический интерес, с точки зрения генезиса нефти, представляет обнаружение производ — нь[х аминокислот (содержат кар — боксильные и аминогруппы, являются исходным материалом в растениях при биосинтезе гормонов, витаминов, пигментов и др.) и порфиринов, входящих в состав гемоглобинов, хлорофиллов, витаминов и др., участвующих в биологических процессах. [c.73]

    Несмотря на простоту способ не нашел широкого применения в анализе, так как не дает полного разделения. Однако он становится весьма эффективным для препаративного выделения чистого вещества из технического продукта при условии, конечно, когда это вещество удерживается в колонке слабее всех других компонентов продукта. Типичные примеры фронтального способа очистка воды пермутитами и другими ионообменными адсорбентами очистка воздуха активированными углями от отравляющих веществ в противогазах и вентиляционных фильтрах химических предприятий. Сточки зрения химика-аналитика метод пригоден для предварительного качественного анализа неизвестной смеси и особенно для определения числа входящих в ее состав компонентов, что, например, делал Цвет при предварительном исследовании состава хлорофилловых пигментов. [c.16]

    У трех крупных групп животных (членистоногие, моллюски и позвоночные) возникли хорошо сформированные глаза, хотя анатомия и путь эволюционного развития зрения у них совершенно различны. Поэтому удивительна почти полная идентичность фотохимии зрительного процесса у всех трех групп животных. В каждом случае зрение связано с фотохимическим превращением пигмента, родственного витамину А (ретинолу) (рис. 8.11). Мы в основном будем рассматривать фотохимию именно этого типа, хотя необходимо обсудить и фоторецепторные структуры глаза, поскольку они на нее влияют. [c.236]

    Цветное зрение ассоциируется скорее с колбочками, чем с палочками. Как мы уже отмечали, максимум поглощения иодопсина незначительно смещен в длинноволновую область по сравнению с максимумом поглощения родопсина палочек. Чувствительность колбочек меньше, чем палочек. Спектральная чувствительность глаза, как и ожидалось, сдвигается в сторону больших длин волн при переходе от тусклого к яркому свету. Позвоночные воспринимают цвет посредством системы цветного зрения, опирающейся на три основных цвета. Должны участ-сдвать три различных пигмента колбочек, поглощающие в синей, зеленой и красной областях спектра. Хотя микроспектроскопия показывает наличие ряда пигментов, выделить их не удается. Вероятно, пигменты очень сходны с родопсином палочек. Один подход к изучению структуры белков связан с исследованием кодирующих их ДНК и определением таким способом их аминокислотных последовательностей. Заряженные аминокислоты, расположенные вблизи п-системы ретиналя, изменяют энергии основного и возбужденного электронных состояний, а установленные структуры пигментов колбочек не противоречат модели, согласно которой спектр поглощения ретиналя испытывает спектральные сдвиги при взаимодействии хромофора с соседними заряженными аминокислотами. Каждая кол- [c.240]

    С точки зрения равномерности распределения пигментов в волокне целесообразнее сначала получить окрашенный в массе полимер и из него формовать волокно. Для этого к неокрашенному порошкообразному полимеру перед грануляцией добавляют пигменты. [c.249]

    Эволюция связывания лиганда в направлении, неблагоприятном для СО, по-видимому, была обращена против эндогенного СО, который выделяется при разложении порфирина в пигменты желчи [85]. Если бы не такая предосторожность, образующийся СО мог бы занять примерно одну треть всех мест связывания гемоглобина [649]. Современная точка зрения на дискриминацию в отношении СО заключается в том, что появившиеся более чем 10 лет назад гемоглобины подверглись адаптации к условиям, которые в ином случае могли оказаться смертельными, — курению табака и загрязнению воздуха. [c.254]

    Глава 9 Пигменты и зрение [c.297]

    Первая часть этой книги посвящена биохимии природных пигментов различных классов, которые придают окраску содержащим их тканям. Далее (в гл. 8) подчеркивалась важность свойства быть окрашенным как для выживания индивида, так и для распространения вида. Ясно, что все это имеет значение лишь в том случае, если окраску и характер ее распределения могут увидеть и распознать различные животные. Другими словами, животные должны обладать способностью обнаруживать свет, а также различать свет разных длин волн. С этой целью у них развились фоторецепторные органы — глаза, в которых центральную роль играют поглощающие свет фоторецепторы, или зрительные пигменты. В дополнение к собственно фоторецепторным пигментам часто используются другие пигменты, играющие вспомогательную роль. В связи с этим в книге о природных пигментах нельзя не остановиться на процессах фоторецепции и зрения. И не только потому, что фоторецепторные молекулы интересны сами по себе, но также и потому, что большинство других природных пигментов были бы не нужны и никогда ие появились, если бы такого механизма различения цветов не существовало. [c.297]


    Родопсин в палочках сетчатки представляет собой пигмент, обусловливающий зрение при низких интенсивностях света. Его максимум поглощения света находится примерно при 500 нм, но с его помощью глаз способен лишь обнаруживать [c.318]

    В 1876 г. Бёлль открыл, что розовый цвет сетчатки лягушки блекнет на ярком свету. Это выцветание так называемого зрительного пурпура ясно демонстрирует наличие фотохимической реакции в зрении. Последующие исследования показали обратимость выцветания, если сетчатка находится in situ. В растворах зрительного родопсина, экстрагированного из сетчатки, начальное фотовыцветание сохраняется, но становится необратимым. В настоящее время признано, что выцветание — слишком медленный процесс, чтобы отвечать за сенсорный зрительный отклик. Оно является конечным результатом последовательности реакций, принимающих участие в нервном возбуждении, Теперь мы обратимся к рассмотрению природы зрительного пигмента и его фотохимии. [c.237]

    Исследователи из г. Севастополя сделали новый существенный шаг вперед в области совершенствования цинкпротекторных лакокрасочных материалов. Они предложили использовать в качестве связующего для них высокомодульное (кремнеземистый модуль 4,0) жидкое стекло, а в качестве пигмента — цинковый порошок марки ПЦО (ГОСТ 12601—67), который оказался наилучшим среди всех имеющихся ныне видов цинкового порошка с точки зрения протекторных свойств. [c.72]

    С точки зрения мехапизма взаимод. красителя с субстратом между П. и крашением принципиальной разницы нет. Однако к красителям, используемым при П., предъявляются дополнит, требования водорастворимые красителе должны иметь высокую р-римость, а нерастворимые — высокую дисперсность, т. к. в печатных красках концентрация красителя значительно выше, чем в красильной ванве более высокая устойчивость к теплу и др. воздействиям, поскольку фиксация красителя на волокне при П. происходит, как правило, в более жестких условиях, а после фиксации во всех способах П. (кроме прямого с помощью пигментов и переводного) окрашенную ткань подвергают энергичной промывке для удаления загустителя (при низкой устойчивости к стирке краситель замоет фон). [c.436]

    Зрительный пигмент колбочек (они ответственны за цветовое зрение)-иодопсин в качестве хромофора также содержит остаток ретиналя. Однако его белковый компонент отличается от опсина палочек. Иодопсин претерпевает превращения, сходные с превращениями Р. [c.273]

    Наша теория объясняет также и тот факт, что мы ощуш,аем запах только в том случае, если воздух движется через носовую полость. Когда вдыхание прекраш,ается, ощущение запаха исчезает. Если считать, что молекула пахучего веш,ества, взаимодействуя с молекулой обонятельного пигмента, снимает электронное возбуждение, соскок электрона с возбужденного уровня на основной был бы с молекулярной точки зрения весьма значительным событием в энергетике процесса. При этом, вероятно, молекулу пахучего вещества довольно сильно оттолкнуло бы от поверхности клетки. Если воздух не движется, то молекула сможет найти обратный путь к поверхности только за счет медленной и беспорядочной диффузии, но если воздух движется, то молекулы пахучего вещества многократно сталкиваются с чувствительной поверхностью. [c.207]

    Пигменты в живом веществе количественно занимают небольшое место, но с геохимической точки зрения они интересны, так как обнаруживаются в нефтях в неизмененном виде и в виде своих производных. Пигменты представлены двумя группами каратиноидами и производными хлорофилла и гемина. Пигменты группы хлорофилла, по-видимому, являются переносчиками биогенного азота из организмов в нефть. [c.213]

    В структурном отношении пигменты колбочек сходны с родопсином палочек и представляют собой комплексы 11-цис-ретинальдегидного хромофора с опсином. Различия в их максимумах поглощения света обусловлены различиями в конформации опсина и во вторичном связывании хромофора. Пигменты колбочек выделить гораздо труднее, чем родопсин палочек, и потому детали их структуры и промежуточные продукты соответствующих циклов превращения выяснены менее подробно. Полагают, что механизмы фотообесцвечивания, регенерации пигмента и формирования нервного импульса, которые имеют место при колбочковом зрении, в принципе сходны с соответ- [c.319]

    В качестве пигмента зрительного пурпура (родопсина) в механизме зрения участвует, помимо полного mpflw -ретиналя, также 11- ш -ретиналь (XX), который может быть получен при окислении П- ис-ретинола (III) двуокисью марганца. [c.149]

    Процесс зрения зависит от группы фоточувствительных пигментов, которые локализованы в сетчатке глаза. Эти зрительные пигменты представляют собой комплексы опсинов (глико-липопротеинов) и 1 Ь ис-ретинальдегида или 11-1 ис-дегидро-ретинальдегида. Более детально эти комплексы и их функции в процессе зрения обсуждаются в гл. 9. [c.84]

    Вопрос о том, что происходит, когда фотон света поглощается зрительным пигментом родопсином, весьма сложен н до сих пор до конца не выяснен. Экспериментальные исследования затруднены тем, что ряд стадий этого процесса протекает за очень короткое время (порядка миллисекунд-пикосе-кунд). В приведенном ниже описании суммированы некоторые современные взгляды на функционирование родопсина, однако по большинству проблем фотохимии нет единой точки зрения. [c.310]

    По вполне понятным причинам наиболее подробна изучено цветовое зрение у человека. В данном случае это три-хроматический процесс, за который ответственны рецепторы трех цветов, чувствительные к разным частям видимого спектра. Эти цветовые рецепторы (колбочки) наиболее многочисленны в сетчатке, в области центральной ямки, которая в связи с этим наиболее цветочувствительна. Каждый из трех различных колбочковых рецепторов содержит свой зрительный пигмент который и определяет его спектральную чувствительность. У человека эти три пигмента имеют значения Хтзх при 440, 535 575 нм и, следовательно, чувствительны соответственно к синему, зеленому и красному свету. Различные формы цветовой слепоты у человека обычно обусловлены отсутствием одного или нескольких из этих рецепторных пигментов, поскольку человек теряет способность реагировать на свет, который поглощается этим пигментом. Например, человек, лишенный пигмента с Хтах = 575 нм (поглощающего красные лучи), видит только синие и зеленые цвета и не чувствителен к свету более длинных волн. [c.319]


Смотреть страницы где упоминается термин Пигменты и зрение: [c.136]    [c.17]    [c.143]    [c.580]    [c.64]    [c.7]    [c.97]    [c.538]    [c.149]    [c.5]    [c.7]    [c.299]    [c.300]    [c.301]    [c.303]    [c.305]    [c.307]    [c.309]    [c.310]    [c.313]    [c.315]    [c.317]    [c.319]    [c.320]   
Смотреть главы в:

Биохимия природных пигментов -> Пигменты и зрение




ПОИСК





Смотрите так же термины и статьи:

Зрение



© 2024 chem21.info Реклама на сайте