Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин аминокислотный состав

    Аминокислотный состав кристаллизующихся миоглобина и гемоглобина человека [892]. [c.246]

    Аминокислотный состав четырех различных типов человеческого гемоглобина [977]. [c.246]

    Аминокислотный состав кристаллического миоглобина и гемоглобина человека [1421]. [c.283]

    Тканевая специфичность. Белковые вещества тканей у одного и того же животного тоже различаются между собой. Например, из табл. 11 видно, что три различных белка лошади — фибриноген, гемоглобин и казеин — имеют различный аминокислотный состав. [c.219]


    Глобин принадлежит к группе гистонов, так как он растворяется в разбавленных кислотах (изоэлектрическая точка 7,5). Примерно одну пятую часть молекулы белка составляют основные аминокислоты, среди которых преобладает лизин. В большинстае гистонов преобладает аргинин. Аминокислотный состав гемоглобина лошади приведен в табл. 42 (стр. 657). Содержание серы (щистива) в глобинах колеблется IB гемоглобине лошади— 0,39%. в гемоглобине кошки — 0,62%, в гемоглобине курицы — 0,86%. Гемоглобин здорового взрослого человека так же, как и гемоглобин лошади, не содержит изолейцина фетальный гемоглобин (HbF) содержит примерно восемь остатков этой аминокислоты. Гемоглобин S, который находится в крови больных серповидной анемией (болезнь, характеризующаяся массовым распадом эритроцитов), является продуктом врожденного нарушения нормального метаболизма. Гемоглобин S значительно менее растворим, чем гемоглобин А, его изоэлектрическая точка лежит заметно выше (на [c.671]

    Электрофоретическое разделение НЬА и НЬ8 по методу подвижной границы показывает, что разница между зарядами этих молекул составляет один элементарный заряд на половину молекулы. Вполне возможно, что эта разница обусловлена заменой всего лишь одной аминокислоты в а- или р-цепи. Для того чтобы дать точный ответ, нужно было бы иметь данные полного анализа аминокислотной последовательности в обеих цепях. Однако установить участок, в котором два вида молекул гемоглобина различаются по аминокислотному составу, можно и без полного определения последовательности аминокислот. Протео-литический фермент трипсин гидролизует пептидные связи, в образовании которых участвуют карбоксильные группы остатков лизина и аргинина. И лизин, и аргинин имеют сравнительно длинные неразветвленные боковые цепи с положительным зарядом на конце. В каждой половине молекулы гемоглобина на 287 аминокислотных остатков приходится около 26 остатков лизина и аргинина. Таким образом, трипсиновый гидролизат половины молекулы гемоглобина должен содержать около 28 пептидов (поскольку в каждой половине имеются две различные цепочки), каждый из которых содержит в среднем немногим больше 10 остатков. В действительности при таком гидролизе отщепляется устойчивое ядро , содержащее около четверти аминокислотного состава половины молекулы. Анализ состава этого ядра , отделенного центрифугированием от прочих пептидов, показывает, что в НЬА и в НЬЗ оно имеет одинаковый аминокислотный состав и, вероятно, одинаковую последовательность аминокислотных остатков. [c.223]


Рис. 40.5. Примеры трех типов миссенс-мутаций, ведущих к появлению аномальных -цепей гемоглобина. На рисунке указаны аминокислотные замены и возможные замены в соответствующих кодонах. У гемоглобина Хикари -цепь обладает практически нормальными физиологическими функциями при измененной электрофоретической подвижности. Функция гемоглобина S в результате мутации в -цепи частично утрачена он может связывать кислород, но при деоксигенации выпадает в осадок. В гемоглобине М Бостон в результате мутации в а-цепи ион железа II, входящий в состав гема, окисляется до железа III, что полностью исключает связывание кислорода. Рис. 40.5. Примеры трех типов <a href="/info/1324656">миссенс-мутаций</a>, ведущих к появлению аномальных -<a href="/info/628965">цепей гемоглобина</a>. На рисунке указаны <a href="/info/508917">аминокислотные замены</a> и <a href="/info/835777">возможные замены</a> в <a href="/info/166527">соответствующих кодонах</a>. У гемоглобина Хикари -цепь обладает практически нормальными <a href="/info/1099025">физиологическими функциями</a> при <a href="/info/74000">измененной электрофоретической</a> подвижности. <a href="/info/178524">Функция гемоглобина</a> S в <a href="/info/1355385">результате мутации</a> в -цепи частично утрачена он может связывать кислород, но при деоксигенации выпадает в осадок. В гемоглобине М Бостон в <a href="/info/1355385">результате мутации</a> в а-цепи ион железа II, входящий в состав гема, окисляется до железа III, что полностью исключает связывание кислорода.
    Исследователи — как химики, так и биологи--называют поразительным тот факт, что из такого узкого круга отобранных природой органических веществ составлен труднообозримый мир животных и растений. Полагают, что, когда период химической подготовки — период интенсивных и разнообразных превращений — сменился периодом биологической эволюции, химическая эволюция словно застыла. Теперь находят массу доказательств тому, что аминокислотный состав гемоглобина самых низших позвоночных животных и человека практически один и тот же более нли менее одинаковыми остаются у разных видов растений состав ферментативных средств, состав веществ, накапливаемых впрок, и т. д. [c.196]

    В слабокислых и нейтральных растворах молекула гемоглобина под действием таких веществ, как мочевина, ацетамид, формамид, взятых в концентрации 4—8 моль/л, распадается на отдельные протомеры. Имея различный аминокислотный состав, а следовательно, и заряд, а-и Р-цепи гемоглобина в электрическом поле движутся с различной скоростью. Вследствие этого на электрофоре-грамме можно различить две полосы белка. [c.39]

    Аминокислотный состав гемоглобина различных животных [c.251]

    Аминокислотный состав белков сыворотки может также характеризоваться действительными видовыми различиями. Однако так же, как у гемоглобинов, эта разница скорее количественная, чем качественная. Исключение составляют белки сыворотки крови птиц и в особенности морской черепахи, которые, повидимому, резко отличаются по содержанию лизина. [c.74]

    Как уже указывалось, третичная структура обеих пар цепей гемоглобина лошади аналогична структуре миоглобина. Подобную же структуру имеют цепи миоглобина тюленя и гемоглобина быка. Интересно сравнить аминокислотные последовательности этих цепей, обладающих аналогичной третичной структурой. На первый взгляд они не имеют ничего общего, поскольку их аминокислотный состав совершенно различен. Однако анализ показал, что в а- и р-цепях гемоглобина и в молекулах мио-глобинов некоторые аминокислотные остатки занимают идентичное положение в глобуле. Например, в местах изгиба в этих цепях часто находятся остатки пролина, в местах сближения между сегментами спирали — остатки глицина образование водородных связей между сегментами происходит через остатки тирозина с железом гема связан гистидин. В этом и состоит основное сходство трех структур. Последовательность остатков в спиральных участках может быть совсем различной, но для стабилизации этой структуры существенно, чтобы внутри глобулы находились неполярные остатки. [c.268]

    Уже давно высказывалось мнение, что первичная структура белка — аминокислотный состав — определяет его пространственную структуру 1116, 117]. Поскольку за последнее десятилетие структура пяти белков — гемоглобина [1181, миоглобина [ПО, 1111, лизоцима [112, 113], а-химотрипсина [119] и рибонуклеазы А [120] — стала известна детально, а еще для нескольких белков рентгеноструктурный анализ дал достаточное разрешение для того, чтобы увидеть основные черты вторичной и третичной структур, многие исследователи пытаются найти корреляцию между аминокислотным кодом (составом и последовательностью аминокислотных остатков) и конформационным кодом (пространственной структурой). [c.388]

    Молекулярный вес отдельных аминокислот колеблется от 75 (глицин) до 240, а для бром- и иодсодержащих почти до 800. Величина среднего молекулярного веса аминокислот у большинства белков оказывается приближенно равной 110, следовательно в состав белков входят преимущественно простые а-аминокислоты. Исходя из такого среднего молекулярного веса, можно подсчитать, что для белков с наименьшим молекулярным весом—около 17000 (например, для альбумина молока и для миоглобина мышц) число аминокислотных остатков все же должно быть не менее 150, а для более сложных белков значительно больше, например для яичного белка с М = 43000—около 400, а для гемоглобина крови с >60000—около 500. [c.172]

    Молекулярные массы белков колеблются от нескольких тысяч до нескольких миллионов, т. е. число аминокислотных остатков в макромолекуле белка составляет от нескольких десятков до сотен тысяч. Например, природный полипептид окситоцин — гормон, выделяемый задней долей гипофиза, — состоит из 9 аминокислот, его мол. масса 1007 мол. масса адренокортикотропного гормона (23 аминокислоты) 3200 фермента рибонуклеазы (124 аминокислоты) — 15000 гемоглобина (белок крови) —68000, а мол. массы белков вирусов могут достигать 50 миллионов. Уже эти вариации создают у белков большое разнообразие. Но гораздо более существенная причина разнообразия белков по сравнению, например с полисахаридами заключается в том, что в состав макромолекул белка могут входить около 20 различных аминокислот, в то время как обычные полисахариды (целлюлоза, крахмал) построены из одного моносахарида — глюкозы. [c.425]


    Если вся эта ДНК входит в состав структурных генов, кодирующих белки, а средний белок, подобно гемоглобину, состоит примерно из 150 аминокислот, то человеческий геном должен содержать примерно 6-7 млн. генов [1338 1339]. В настоящее время известно, что эта цифра завышена примерно на два порядка. Информативная (кодирующая) ДНК чередуется с последовательностями, которые не транслируются в аминокислотные последовательности. Некоторые из них имеют какие-то специфические функции, для других функции до сих пор не обнаружены. [c.114]

    Предположение о том, что 70% цепи находится в спиральной конформации, подтверждается результатами, полученными методом дейтерообмена. Скоулоди (1959) 01бнаружила при раосмотрбн и двухмерной проекции Фурье единичной ячейки миоглобина тюленя, что, несмотря на совершенно различный аминокислотный состав, миоглобины тюленя и кашалота им еюг чрезвычайную сходную третичную структуру. Перутц (1960) на основании трехмерного анализа гемоглобина пришел к заключению, что каждая из четырех субъединиц этой молекулы структурно сходна с миоглобином. При анализе миоглобина с разрешением в 2 А (этого еще недостаточно для атомного разрешения) группа Кендрью (1961) получила возможность сделать некоторые выводы о последовательности части аминокислот в миоглобине. [c.711]

    Определение аминокислотной последовательности — задача очень трудоемкая. Однако ее можно было бы значительно облегчить, если бы удалось выработать приемы для фрагментации длинных пептидных цепей на относительно небольшие пептиды, содержащие от 10 до 15 аминокислотных остатков, и на другой ряд более длинных пептидов, с тем чтобы можно было установить места перекрывания небольших пептидов. Такая идеальная возможность редко встречается. Практически проблема решалась несколькими путями. История изучения инсулина, рибонуклеазы и гемоглобина отражает три различных подхода. В первых исследованиях, проведенных на инсулине, изучали частичные кислотные гидролизаты динитрофепилированных пептидов (см. гл. 6), а ферменты были использованы на второй стадии работы для получения более крупных пептидов. Быстрое установление структуры рибонуклеазы оказалось возможным благодаря усовершенствованию анализа аминокислот. Аминокислотный состав пептидов, полученных [c.113]

    Даже у человека существует несколько типов гемоглобина. Кроме миоглобина и гемоглобина А ( 2 2) у взрослых, известен также минор-,ный гемоглобин kiiaibi). В крови человеческого плода содержится другой тип гемоглобина — гемоглобин F ( 2 2). В присутствии 2,3-ди-фосфоглицерата он обладает более высоким сродством к кислороду, чем гемоглобин А, что способствует выполнению его функции — снабжению плода кислородом. Через несколько месяцев после рождения гемоглобин F исчезает и заменяется гемоглобином А. Гемоглобины человека различаются по аминокислотному составу и последовательности. У других видов аминокислотный состав гемоглобинов различается еще сильнее. Взаимодействия между субъединицами также варьируют, а у одного из типов гемоглобинов, эритрокруоринов, обнаруживаемых у некоторых беспозвоночных, имеется 192 субъединицы [79]. [c.314]

    Гемоглобин эритроцитов обеспечивает обратимое связывание и транспорт кислорода от легких во все органы и клетки живых существ. Миоглобин сохраняет запасенный кислород в мышцах. В этих гемопротеидах молекула белка-протеина связана с одной или несколькими молекулами гема(У), представляющего собой комплекс Ре(П) с протопорфирином. В настоящее время известен аминокислотный состав и последовательность аминокислот в протеине гемоглобина, место присоединения частиц гема, пространственная структура гемоглобина. Гем, РеПП, локализован в расщелине между спиралями белковой молекулы. По соседству с гемом находится так называемый проксимальный (соседний) фрагмент имидазола (Im) гистидино-вого (His) остатка, а на известном удалении с противоположной стороны от атома железа гема находится так называемый гисталь-ный (удаленный) имидазол другой гистидиновой молекулы. В отсутствие О2 атом Ре(П) в гемоглобине прочно связан с порфирином четырьмя донорно-акцепторными связями Fe-N и намного менее прочной [c.286]

    Способность к специфическим взаимодействиям определяется наличием в молекулах порфиринов и металлопорфиринов разнообразных центров специфической сольватации, к которым, в первую очередь, следует отнести сопряженную л-систему макрокольца, реакционный центр лиганда порфирина, центральный атом металла в составе металлопорфиринов, гетероатомы, входящие в состав периферийных заместителей. В биологических структурах молекулы металлопорфиринов, как правило, принимают участие в нескольких типах последовательных или параллельных специфических взаимодействий, которые могут иметь конкурентный характер. Например, я-система и периферийные заместители железо(П)протопорфирина - простетического фрагмента гемоглобина и цитохромов вступают в специфические взаимодействия с алифитическими и ароматическими радикалами аминокислотных остатков протеина или других органических молекул (лекарственных препаратов, токсинов и т.д.), которые оказывают влияние на координационные свойства центрального атома железа и биологическую активность хромопротеина в целом [1, 2]. При этом существенное влияние имеют pH и электролитный состав среды, температура [3]. Очевидно, что изучение природных макрообъектов и анализ результатов, полученных для таких сложных многокомпонентных систем, в большинстве случаев представляет трудноразрешимую задачу и не позволяет выявить роль каждого компонента. Поэтому исследования, позволяющие вскрыть факторы, влияющие на активность металлопорфиринов и механизмы их биохимического поведения, проводятся на упрощенных модельных системах. Эти системы содержат металлопорфирин и активный молекулярный лиганд, помещенные [c.298]

    Пероксидаза хрена в действительности не является простым ферментом. По-видимому, у многих, если не у всех, высших растений имеется множество форм пероксидазы (иногда их называют изоферментами) которые удается разделить методами электрофореза и (или) хроматографии. Множественность форм пероксидазы можно сопоставить с неоднородностью, обнаруженной у гемоглобинов (разд. 7.1 и 7.2). В корнеплоде репы найдено, например, семь изоферментов [151 ], а в хрене — около десяти изоферментов [131 ]. Относительная концентрация изоферментов может варьировать в зависимости от времени года [151 или от одной части растения к другой [147]. Подобные колебания в относительной концентрации изоферментов, возможно, связаны с различными и изменяющимися функциями пероксидаз в метаболизме растений. Четыре изофермента пероксидазы хрена, которые удалось выделить в очищенном состоянии, как оказалось, все содержат углеводный фрагмент и имеют примерно одинаковый аминокислотный состав [131]. Природа неоднородности остается неясной. Спектры различных изоферментов пероксидазы хрена почти идентичны, и практически совпадает их ферментативная активность, что облегчает сопоставле- [c.197]

    Поразительно то, что когда период химической подготовки — период интенсивных и разнообразных превращений, о которых можно-строить лишь осторожные гипотезы, сменился периодом биологической эволюции, химическая эволюция словно затормозилась. Развитие организмов в общем очень слабо отразилось на основных чертах строения" белков и ферментов. Пролоне произвел анализ гемоглобина кистеперой рыбы и нашел, что аминокислотный состав и в этом случае не представляет чего-либо необычного и близок к составу гемоглобина позвоночных. [c.22]

    Если субъединицы состоят из полипептидных цепей нескольких типов, то после их разделения возникает вопрос какую из цепей приписать той или иной субъединице Обычно оказывается необходимым вернуться к нативной структуре и попытаться, используя более мягкие условия денатурации, разделить ее на субъединицы, сохраняющие нативную третичную структуру. Затем после очистки субъединиц определяют молекулярную массу и аминокислотный состав субъединиц каждого типа. Например, при добавлении сильного денатурирующего агента гемоглобин распадается на две а- и две 8-цепочки. В условиях мягкой денатурации образуются главным образом о/З-димеры свободные а- и 13-субъединицы встречаются очень редко. Основываясь на аминокислотном составе цепей, гемоглобин можно было бы назвать четырехсубьединичным белком, но в реакциях он ведет себя как белок, состоящий из двух субъединиц, каждая из которых представляет собой двухцепочечный а/З-димер. Весьма удобный химический метод анализа четвертичной структуры — сщивание субъединиц. В случае простых олигомеров, у которых все субъединицы тождественны, белок обрабатывают раствором с избытком молекул диметилсу-беримидата  [c.131]

    Остатки природных белков, составляющие группу примерно из 20 аминокислот, все имеют I (/е с>)-конфигурацию, кроме глицина, у которого R = Н (Зангер и Смит приводят список этих кислот и используемые сокращения [1785]). По-видимому, отдельные d ( ел /го)-кислоты входят в состав некоторых низших организмов. Мы не будем здесь касаться d-кислот, хотя они и представляют определенный интерес. Это следует, в частности, из результатов исследования оптической активности синтетических полипептидов. Белки построены в основном из трех-четырех различных остатков, но в меньшем количестве в молекулу входят также еще пятнадцать или больше других кислот. Простейш ий белок, инсулин, состоит из 106 аминокислотных единиц, гемоглобин — из 580. [c.254]

    Рассмотренные нами биомолекулы, играющие роль строительных блоков, имеют очень небольшие размеры по сравнению с биологическими макромолекулами. Например, длина молекулы такой аминокислоты, как аланин, составляет менее 0,7 нм, тогда как в эритроцитах типичный белок гемоглобин, осуществляющий перенос кислорода, состоит примерно из 600 аминокислотных единиц, соединенных в длинные цепи, уложенные в виде глобулярных структур. Молекулы белков, в свою очередь, малы по сравнению, например, с рибосомами-субмолекулярными частицами, содержащимися в тканях животных. В состав каждой из них входит приблизительно 70 различных белков и четыре молекулы нуклеиновой кислоты. Рибосомы, в свою очередь, малы по сравнению с такими ор-ганеллами, как митохондрии. Таким образом, переход от простьЬс биомолекул к более крупным субклеточным структурам происходит скачкообразно. [c.70]

    Известно много генетических болезней человека, при которых тот или иной фермент либо совсем неактивен, либо имеет какой-то дефект, затрагивающий его каталитическую или регуляторную функцию. При таких заболеваниях в полипептидных цепях дефектного фермента содержится одна или большее число неправильных аминокислот, появившихся в результате мутации участков ДНК, кодирующей этот фермент. Каталитическая активность фермента зависит не только от наличия определенных аминокислотных остатков в каталитическом и регуляторном центрах, но и от общей трехмерной структуры фермента. Поэтому замена одного аминокислотного остатка в каком-либо важном месте цепи может привести к изменению или даже к полной утрате каталитической активно сти фермента, подобно тому как замена всего лишь одного аминокислотного остатка в молекуле гемоглобина вьпы-вает появление серповидноклеточного гемоглобина с нарушенной функцией (разд. 8.18). Если генетически измененный фермент входит в состав ферментной системы, катализирующей ка-кой-нибудь центральный метаболический путь, то последствия такого изменения могут быть очень тяжелыми, вплоть до летальных нарушений метаболизма. [c.266]

    Особенно хорошо изучен в настоящее время патологический HbS, входящий в состав эритроцитов при так называемой серповидноклеточной анемии — заболевании, распространенном в малярийном поясе тропических стран. HbS благодаря своей плохой растворимости легко вьшадает в осадок в содержимом эритроцита и, деформируя красную кровяную клетку, придает ей характерную серповидную форму. HbS обладает меньшим сродством к кислороду, чем и объясняется при замещении им большого количества НЬА возникновение у людей анемии. В то же время следует заметить, что люди, в крови которых содержится HbS, невосприимчивы к малярии. HbS отличается от обычного НЬА (А — adultus, взрослый) по своей электрофоретической подвижности и по аминокислотному составу, причем изменение аминокислотного состава касается только двух остатков глютаминовой кислоты примерно из 600 аминокислот, входящих в состав молекулы гемоглобина. В HbS в двух полипептидных цепочках Р (стр. 64—65) вместо остатка глютаминовой кислоты находится валин. Ниже приводится строение фрагмента полипептидной цепочки гемоглобина А и соответствующего фрагмента этой же цепочки гемоглобина S  [c.474]

    СОСТОИТ из нескольких гетерогенных компонентов, к которым относится, в частности, у-глобулиновая фракция, или фракция антител. Около 40% крови приходится на эритроциты, которые в свою очередь на 35% состоят из гемоглобина — белка с молекулярным весом 64 500. Роль эритроцитов сводится просто к тому, чтобы не дать гемоглобину диффундировать из кровяного русла. Нормальный гемоглобин взрослого человека, обозначаемый символом НЬА, состоит из четырех по.липептидных цепей двух одинаковых а-цепей, каждая из которых содержит 141 аминокислотный остаток, и двух одинаковых более длинных р-це-пей, содержащих по 146 аминокислотных остатков. М-концевые участки этих цепей имеют следующий состав Вал-Лей-Сер-Про-Ала-Асп-Лиз-(а-цепь) и Вал-Гис-Лей-Тре-Про-Глу-Глу-Лиз-(р-цепь). С каждой цепью соединена также группа гема, несущая атом железа. Таким образом, в одной молекуле гемоглобина имеется четыре гемогруппы. Железо находится в геме в состоянии двухзарядного иона Ре +. Может возникнуть вопрос, есть ли смысл приписывать молекуле гемоглобина структуру гРа Не проще ли считать ее димером ар Однако при нормальных условиях роль переносчика кислорода в организме играет именно структура ааРг, простой димер ар способностью переносить кислород, по-види мому, не обладал бы (см. разд. 5 гл. XXII). Ряд других данных, в том числе данные по титрованию и равновесию диссоциации, о которых пойдет речь ниже, также свидетельствуют в пользу структуры агРг как наиболее простой структурной единицы гемоглобина. Пространственное строение этой единицы будет детально рассмотрено в разд. 2 гл. XV. [c.222]

    Помимо простых белков, состоящих только из аминокислотных остатков, существуют белки, содержащие другие структуры. К ним относятся а) гемоглобин, содержащий железопорфириновый комплекс б) гликопротеиды, в состав которых входят молекулы углеводов, в) липопротеи-ды — белковый комплекс с жирами и стероидами г) ну-клеопротенды, состоящие из белковых, молекул и нуклеиновых кислот. [c.178]

    Вслед за рибонуклеазой была расшифрована последовательность аминокислотных остатков субъединицы белка вируса табачной мозаики [72] с молекулярным весом 17 ООО, в состав которого входят 158 аминокислотных остатков, миогло-бина, гемоглобина, лизоцима и др. [c.138]

    Миоглобин (Mb) является сложным белком, входящим в состав мышц большинства животных организмов. Его молекула состоит из одной полипептидной цепи, связанной с одной группой протогема. Атом двухвалентного железа, входящий в состав гема, способен соединяться с кислородом. Однако в отличие от.гемоглобина миоглобин дезоксиге-нируется при значительно более низких парциальных давлениях кислорода, что позволяет ему выполнять функцию резервного источника кислорода в мышцах. Единственная полипептидная цепь миоглобина состоит из 153 аминокислотных остатков. Такая относительная несложность молекулы миоглобина, доступность его из разнообразных источников, а также способность образовывать кристаллы позволили в короткий срок определить аминокислотную последовательность и полную структуру молекулы этого белка. Строение миоглобина стало известно благодаря работам Эдмундсона и Хирса, изучавших аминокислотную последовательность белка, и Кендрью с сотрудниками, которые провели рентгеноструктурный анализ миоглобина кашалота, используя метод изоморфного замещения, впервые примененный Перутцем с сотрудниками в изучении гемоглобина. [c.139]

    Доступность синтетических полипептидов сыграла большую роль в уточнении условий, определяющих устойчивость вторичной структуры, однако установление третичной структуры значительно сложнее. Это было наглядно показано путем определения конформаций миоглобина [32] и гемоглобина [34] методом рентгеновского кристаллографического анализа. Белок миоглобина состоит из единственной полипептидной цепи с восемью сегментами правой а-спирали. В спираль входит 7—24 аминокислотных остатка, а их общая длина составляет примерно 78% полипептидной цепи. Два остатка образуют острые углы, а другие спиральные сегменты отделяются за счет изменения длины цепи при переходе к нерегулярной конформации. Кендрью [376] обсудил некоторые особенности структуры белков, которая чрезвычайно компактна и имеет внутри не более пяти изолированных молекул воды. За очень редким исключением, все полярные группы располагаются снаружи молекулы, и, следовательно, боковые цени, находящиеся в контакте друг с другом внутри молекулярной структуры, как правило, имеют гидрофобный характер. Таким образом, создается впечатление, что гидрофобное взаимодействие должно быть основным фактором, стабилизующим конформацию. Однако остается спорным вопрос о том, что же определяет точки, в которых происходит нарушение конформации. Известно, что остаток пролина может и не размещаться в а-спирали однако это ограничение не может служить объяснением всех неспиральпых последовательностей в молекуле миоглобина. Состав неспиральных участков не имеет также никакого отношения к классификации синтетических полипептидов в соответствии с их тенденцией к существованию в спиральной форме [377]. Интересно, что конформации миоглобина и четырех субъединиц, составляющих молекулу гемоглобина, несмотря на различную последовательность Б них аминокислот, должны быть весьма сходны между собой [378, 379]. В таком случае третичная структура будет, по-видимому, определяться сложными соотношениями, которые детально не исследованы. [c.135]

    За последнее десятилетие были достигнуты значительные успехи в дальнейшем установлении точного строения различных белков. Хотя гидролиз белков и последующий анализ гидролизата, который широко использовался раньше, давал возможность получать данные об относительном содержании и природе входящих в состав белка аминокислот, он не позволял сделать какие-либо выводы о распределении аминокислот в полипептидной цепи молекулы белка. Методы анализа и разделения аминокислот до сороковых годов были очень длительными и трудоемкими н требовали сравнительно больших количеств исходного продукта. Разработанные в 40-х годах новые методы анализа и разделения аминокислот и определения концевых групп в молекулах белков и не слишком высокомолекулярных полипептидов создали возможность наметить основные направления решения исключительно важной проблемы выяснения специфической последовательности аминокислот в молекулах некоторых сравнительно простых белков. Первым большим достижением в этой области химии была расшифровка Сангера с сотр. [4] последовательности аминокислот в молекуле инсулина. С момента опубликования этой важнейшей работы, достигшей цели, которая в течение длительного времени казалась неосуществимой, была полностью выяснена последовательность аминокислот у нескольких белков. Установление того факта, что молекулы специфического белка являются однородными по молекулярному весу и содержат строго определенную последовательность аминокислотных звеньев, неизменную для всех макромолекул, явилось одним из наиболее важных достижений химии белка. В число белков, для которых была выяснена последовательность аминокислот, входят инсулин [4], цитохром С [5—7 , белок вируса табачной мозаики [8—10], рибонуклеаза [11 — 13], а- и Р-цепи гемоглобина человека [14, 15], миоглобин кита [16—18], кортикотропин [19—21], глюкагон [22] кроме того, была установлена последовательность аминокислот в некоторых полипептидах более низкого молекулярного веса и частично выяснена последовательность аминокислот у нескольких высокомолекулярных белков [23]. [c.329]

    В начале 60-х гг. был завершен аминокислотный анализ белка гемоглобина. Цепь р состоит из 146 аминокислот. Вся транскрибируемая часть гена должна содержать 438 нуклеотидов, т. к. генетический код триплетен (146 3 =438). Этот маленький з часток нужно идентифицировать на одной из хромосом, в состав которой входит нить ДНК длиной несколько сантиметров. После того, как этот участок выявлен, его нужно выделить и накопить в большом количестве, чтобы определить последовательность нуклеотидов в составе анализируемого отрезка ДНК-молекулы. [c.66]

    Производные свободного основания порфина и их металлокомплексы в качестве простетических групп входят в состав многих природных белков (ци-тохромы, гемоглобин, цитохромоксидаза, реакционные центры фотосинтеза и др.) [1]. Колебательная спектроскопия позволяет исследовать тонкие структурные перестройки в металлокомплексах порфиринов при изменении спинового состояния центрального иона [2], а также изучать роль аминокислотных остатков окружения в функционировании активных центров сложных белков [3,4]. Относительно большие размеры молекул порфиринов биологического происхождения и несимметричные замещения атомов водорода в тетрапиррольном макроцикле приводят к высокой плотности колебательных уровней, что осложняет задачу расшифровки колебательных спектров. Авторы [5] отмечают, что надежное решение этой задачи требует теоретического и экспериментального исследования ряда молекул данного класса с последовательным усложнением структуры и обязательным использованием изотопозамещенных молекул. [c.121]


Смотреть страницы где упоминается термин Гемоглобин аминокислотный состав: [c.59]    [c.341]    [c.515]    [c.192]    [c.403]    [c.175]    [c.387]    [c.106]    [c.192]   
Химия природных соединений (1960) -- [ c.483 ]

Химия и биология белков (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные гемоглобине

Гемоглобин

ЗШи, аминокислотный состав



© 2025 chem21.info Реклама на сайте