Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы клеточной инженерии

    ОСНОВЫ КЛЕТОЧНОЙ ИНЖЕНЕРИИ РАСТЕНИЙ [c.158]

    Основы клеточной инженерии [c.494]

    Прикладную генетич. и клеточную инженерию нередко объединяют названием новая Б. , их появление укрепило уверенность в том, что Б. со временем может стать основой крупного пром. произ-ва. [c.290]

    Клеточная инженерия — конструирование клеток с новыми свойствами, основа генной инженерии соединение геномов разных видов. [c.189]


    В настоящей книге нашли отражение разные стороны исследований в области клеточной инженерии растительных и животных клеток. Одна из задач клеточной инженерии, как это следует из представленного в книге экспериментального материала, состоит в создании клеточных систем с новыми свойствами на основе клеточных взаимодействий. Были приведены примеры экспериментальных решений этих задач, известных в мировой литературе, а также полученных на кафедре клеточной физиологии и иммунологии МГУ им. М. В. Ломоносова. Так, в проводимых на кафедре работах по клеточной инженерии с растительными объектами и микроорганизмами выявлено большое число видов, способных формировать искусственные ассоциации разного типа. Во многих случаях продемонстрировано улучшение ростовых и биосинтетических параметров культивируемых клеток (тканей) в присутствии микроорганизмов и способность их к регенерации растений. Растения при этом способны включать клетки микроорганизмов в свои ткани и иногда — в клетки, получая выгоду от присутствия симбионта при дефиците источников питания. Все это представляет интерес с точки зрения перспективы использования метода смешанного культивирования на основе растительных клеток в биотехнологии с целью, во-первых, поиска новых субстратов для промышленного получения биомассы культивируемых растительных клеток и удешевления производства на их основе экономически важных продуктов и, во-вторых, получения устойчивых ассоциаций растений-регенерантов с азотфиксирующими организмами, обеспечивающими рост растений при дефиците минерального азота. [c.121]

    Полученные нами факты являются основой для формирования нового направления исследований, задачей которого является экспериментальное и теоретическое решение проблемы фенотипической коррекции клеток как специфически управляемого процесса. Иначе это направление можно было бы назвать клеточной инженерией. [c.307]

    Рассмотренные в этой главе генетические методы и закономерности показывают, что селекция представляет собой область наиболее полного практического воплощения результатов, получаемых генетикой. Все традиционные разделы генетики — гибридизация, мутационный процесс, хромосомные перестройки и полиплоидия, генетика популяции и т. д. — находят применение в селекции. Развивающиеся в последнее время методы генной и клеточной инженерии, биотехнология обещают в ближайшее время обогатить генетические основы селекции новыми подходами, главное содержание которых — сокращение сроков получения исходного материала для селекции и направленность в изменении генов и хромосом. [c.564]


    При отборе материала для четвертого издания учебника учитывалось, как и ранее, значение определенных разделов биохимии для формирования отчетливых представлений по общей биохимии, а также то, что развитие самой биохимии в отдельных ее частях идет неравномерно за последнее время произошли огромные сдвиги в изучении строения и обмена некоторых групп органических соединений. Поэтому в книге уделено много внимания строению белков, нуклеиновых кислот и ферментов, рассмотрены особенности белковых тел как носителей жизни, обращено внимание на принцип комплементарности в строении нуклеиновых кислот и его значение в матричном биосинтезе природных полимеров, изложены современные представления о биологическом окислений, регуляции обмена веществ и взаимосвязи обмена соединений различных классов. Там, где это уместно, освещены вопросы использования достижений биохимии в развитии новых направлений в биологических науках (химическая систематика, молекулярные основы наследственности, изменчивости и эволюции и др.), медицине (наследственные болезни, биохимическая диагностика, стратегия химиотерапии, взаимодействие вирусов и клеток и т. п.), сельском хозяйстве (биохимическая паспортизация генетического фонда, экологическая биохимия, клеточная инженерия и др.) и промышленном производстве (инженерная энзимология, техническая биохимия, фармацевтическая химия, микробиологический синтез и т. п.). [c.3]

    Следует отметить, что работы по генной инженерии, возможности манипулирования генами растений представляют огромный интерес для фундаментальных исследований. Эти работы позволяют изучать основы молекулярной и клеточной биологии растительной клетки, глубинные механизмы процессов, происходящих в ней. Вместе с тем нельзя не задуматься о своевременности прикладного применения результатов генно-инженерных исследований. [c.157]

    Фундаментальная биохимия является основой для многих наук биологического профиля, таких, как генетика, физиология, иммунология, микробиология. Успехи клеточной и генной инженерии в последние годы в значительной мере сблизили биохимию с зоологией и ботаникой. Велико значение биохимии для таких наук, как фармакология и фармация. [c.4]

    Успехи современной биохимии. Биологическая химия изучает различные структуры, свойственные живым организмам, и химические реакции, протекающие на клеточном и организменном уровнях. Основой жизни является совокупность химических реакций, обеспечивающих обмен веществ. Таким образом, биохимию можно считать основным языком всех биологических наук. В настоящее время как биологические структуры, так и обменные процессы, благодаря применению эффективных методов, изучены достаточно хорошо. Многие разделы биохимии в последние годы развивались столь интенсивно, что выросли в самостоятельные научные направления и дисциплины. Прежде всего можно отметить биотехнологию, генную инженерию, биохимическую генетику, экологическую биохимию, квантовую и космическую биохимию и т. д. Велика роль биохимии в понимании сути патологических процессов и молекулярных механизмов действия лекарственных веществ. [c.5]

    Представления об универсальности свойств генетического материала и клеточного строения живой материи являются теоретическими обобщениями, которые воплощаются в таких новых областях экспериментальной биологии, как клеточная и генная инженерия. Это синтетическое направление легло в основу новой области прикладной биологии — биотехнологии. [c.257]

    По-видимому, многие считают, что наибольший вклад вирусологии в развитие науки и человеческой цивилизации вообще — это открытие обратной транскриптазы, использование которой лежит в основе современной генной инженерии. Однако следует иметь в виду, что большинство важнейших представлений современной молекулярной и клеточной биологии (например, об нитронах, сплайсинге или онкогенах) сформировалось именно в результате изучения структуры и функций вирусов. Несомненно, фронт вирусологических исследований будет и дальше расширяться, а число ученых, применяющих специфические методы вирусологии, будет постоянно возрастать. [c.7]

    В настоящее время наиболее богатый материал по популяционной динамике имеется для популяций различных клеток. В последнее десятилетие в популяционной микробиологии и количественной онкологии получен богатый экспериментальный материал. Фактически каждый исследователь, работающий в области изучения и селекции микроорганизмов, в генетической инженерии, в биотехнологии, в количественной онкологии, проводит многочисленный эксперименты по популяционной динамике. В целом микроорганизмы и клеточные культуры очень часто используют для изучения фундаментальных биологических явлений. Большая часть современных знаний по молекулярной биологии, молекулярной генетике, генетической инженерии была получена на основе изучения микробов. Это определяется тем, что микроорганизмы и клеточные линии относительно легко культивируются, процесс генерации нового поколения занимает от десятков минут до нескольких часов по сравнению с макроорганизмами, для роста которых требуются годы и десятилетия. Вместе с тем сценарии развития близки для всех популяций, развивающихся в закрытых системах. [c.679]


    За рубежом созданное в последние годы производство на основе клеточной инженерии выпускает десятки вариантов моноклональных антител [85]. Производство моноклональных антител как диагностических препаратов по тоннажу - типичный пример микротоннажной биотехнологической продукции, относимой за рубежом к спехщаль-ным химикатам. Выпуск их исчисляется десятками граммов и килограммов в год при огромной его стоимости. В 1985 г. только диагностических моноклональных антител и систем их использования было произведено на сумму более 800 млн. дол., а к 1992 г. объем их продаж прогнозируется на уровне 8,4 млрд. дол. [c.62]

    М, б. имеет болыпое практич. значение как теоретич. основа южных разделов медицины (вирусологии, иммунологии, 0НКОЛО1ИИ и др.), с. х-ва (направленное и контролируемое изменение наследств, аппарата животных и растений для по. гучения высокопродуктивных пород и сортов) и совр. биотехнологии (генная инженерия, клеточная инженерия и т. п.). [c.347]

    Г-н. стала основой развития молекулярной генетики. Благодаря возможности клонирования чужеродных генов в бактериях, животных и растит, клетках (выделеньг клоны мн. генов рибосомной РНК, гистонов, интерферона и гормонов человека и животных и т. п.), Г. и. имеет прикладное значение. Она составляет, наряду с клеточной инженерией, основу совр. биотехнологии. С помощью методов Г. и. получены мн. иовые, иногда неожиданные данные, открыто, напр., мозаичное строение генов у высших организмов, изучены транспозоны бактерий и мобильные диспергированные элементы высших организмов, открыты онкогены и т.п. (см. Мигрирующие генетические элементы). [c.518]

    В настоящее время перед биологической наукой поставлена задача — обеспечить преимущественное развитие научных исследований по следующим основным направлениям разработка методов генетической и клеточной инженерии, создание на их основе новых процессов для биотехнологических производств с целью получения принципиально новых пород животных, форм растений с ценными признаками разработка новых методов и средств диагностики, лечения и профилактики наследственных заболеваний разработка научных основ инженерной энзимологии разработка и внедрение новых биокатализаторов (в том числе иммобилизованных) и оптимизация с их помощью биотехнологических процессов получения химических и пищевых продуктов исследования структуры и функции биомолекул клетки изучение молекулярных и клеточных основ иммунологии, а также генетики микроорганизмов и вирусов, вызывающих заболевания человека и животных, создание методов и средств диагностики, лечения и профилактики этих заболеваний исследования молекулярно-биологиче-ских механизмов канцерогенеза, природы онкогенов и онкобелков, их роли в малигнизации клеток и создание на этой основе методов диагностики и лечения опухолевых заболеваний человека исследования проблем биоэнергетики, питания, психики и молекулярных основ памяти и деятельности мозга. Таким образом, можно наметить следующие главные направления развития исследований в области биологической химии на ближайшую и отдаленную перспективу, так называемые горизонты биохимии  [c.18]

    Во многих научных лабораториях проводится селекционно-генетическая работа по улучшению аминокислотного состава белков зерна ячменя на основе скрещиваний с высоколизиновыми формами Хайпроли и Ризо 1508, осуществляется также поиск генетических источников высокого содержания белка с улучшенным аминокислотным составом для пшеницы, тритикале и других зерновых культур. Особые надежды возлагаются на новые методы создания ценных генотипов сельскохозяйственных растений, основанные на использовании достижений генетической н клеточной инженерии. [c.259]

    В научных исследованиях иммуноферментный анализ нашел применение как в традиционных областях биохимических исследований, так и в новых областях, связанных с разработкой методов генной и клеточной инженерии. В этой связи следует отметить большое значение традиционных методов аналитического электрофореза, в которых для идентификации отдельных компонентов употребляются иммунофермеитные конъюгаты. В этом случае в качестве субстратов используются вещества, которые образуют нерастворимые красители, в результате чего происходит окрашивание компонентов на целлюлозных носителях. Тот же принцип лежит в основе иммуногистохимии, при этом вместо люминесцентных микроскопов применяются обычные световые микроскопы, что значительно упрощает эксперимент. [c.122]

    Успехи генной инженерии в методах манипулирования генами на основе рекомбинантных ДНК, получаемых in vitro, а также методы клеточной инженерии открывают огромные перспективы в экспериментальной биологии и в создании новых форм организмов, полезных человеку. Мощь этих методов поначалу испугала самих исследователей. Вот как выразил это Э. Чаргафф в 1973 г. Имеем ли мы право посягать необратимым образом на эволюционную мудрость миллионов лет только для того, чтобы удовлетворить амбицию и любопытство нескольких ученых Прошел, однако, период первого восхищения и растерянности. Генная и клеточная инженерия становятся повседневной рутиной научного эксперимента, используются для селекции продуцентов полезных белков (см. гл. 22) и в медицинских целях (см. гл. 21). Возникла новая область практического использования этих методов — биотехнология. Все очевиднее ста- [c.288]

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]

    Системы на основе с-тус-последовательностей. Мышиные моноклональные антитела 9Е10 к белку с-тус широко использу-К)тся в качестве иммунохимического реагента в клеточной биологии и белковой инженерии [165]. Эпитоп, распознаваемый антителами, который представляет собой последовательность из 11 аминокислотных остатков, может быть экспрессирован в составе различных белков и остается распознаваемым антителами. Эта аффинная метка используется в Западном блоттинге, для иммунопреципитации белков, в проточной цитометрии, а также для мониторинга экспрессии генов на уровне трансляции в бактериальных и эукариотических системах, в том числе, и для быстрой очистки рекомбинантных белков, которые могут быть закристаллизованы 166, 167]. Система часто используется для обнаружения рекомбинантных белков, но редко - для их выделения в чистом виде. [c.129]


Смотреть страницы где упоминается термин Основы клеточной инженерии: [c.450]    [c.496]    [c.33]    [c.79]    [c.133]    [c.7]    [c.444]   
Смотреть главы в:

Биохимия -> Основы клеточной инженерии




ПОИСК





Смотрите так же термины и статьи:

Инженерия клеточная



© 2024 chem21.info Реклама на сайте