Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О термодинамическом равновесии в пламенах

    Важная характеристика пламени — его температура. Температура является параметром, характеризующим систему, находящуюся в термодинамическом равновесии. Пламена не относятся к такого рода системам. Экспериментальные методы измерения температуры (методы зондовой и радиационной пирометрии) позволяют получить усредненное значение температуры, характеризующей главным образом энергию поступательного движения частиц в пламени. Методом обращения линии натрия в окрашенных пламенах были получены значения температур для смесей воздуха с топливами прр 0,1 МПа (влажные смеси, комнатная температура) [147]. Отмечается следующая закономерность в понижении расчетной температу- [c.116]


    Основными характеристиками пламени являются его температура и состав. Чаще всего применяют горючие смеси, предварительно смешанные с окислителем, например кислородом воздуха, горящие в ламинарном режиме. В этом случае фронт пламени поддерживается над срезом горелки быстрым потоком газа. Фронт пламени — это зона, в которой бурно протекают химические реакции. Ламинарное пламя имеет сложную структуру и состоит из нескольких зон. Во внутренней зоне происходят первичные реакции сгорания горючей смеси с образованием различных радикалов (молекул), например С , Сз, ОН, СН и др. Верхняя часть этой зоны имеет вид ярко светящегося конуса. В реагирующих газах нет термодинамического равновесия. Аналитическое значение имеет внешний конус пламени, где происходят реакции полного сгорания образующихся во внутреннем конусе радикалов в кислороде воздуха, диффундирующего из окружающей атмосферы. Этот конус слабо окрашен и практически не имеет собственного фона в видимой области спектра. [c.11]

    Предполагая, что в пламени существует локальное термодинамическое равновесие (ЛТР), зная состав топлива и окислителя, а также их соотношения, можно рассчитать температуру пламени. Существуют различные экспериментальные методы определения температуры пламени. Например, хорошо известным методом является метод обращения спектральных линий атома натрия, в котором пламя, содержащее следы натрия, просвечивается источником излучения с известной температурой. Линии натрия в спектре пламени будут видны на фоне спектра источника излучения как линии испускания, если температура источника ниже температуры пламени, -и как линии поглощения, если температура источника выше температуры пламени. При равенстве температур интенсивность линий натрия не будет отличаться от интенсивности источника излучения с известной температурой. [c.56]

    При давлениях горючей смеси порядка атмосферного (или выше атмосферного) вследствие большой абсолютной скорости реакции температура пламени достигает. 2000—3000° К и мы имеем обычные горячие пламена с характерной для них структурой. Структура горячего пламени может быть различной в зависимости от условий горения. Наиболее простой структурой обладают пламена, горящие без доступа внешнего воздуха. Таковы пламена, горящие в трубах, в частности, пламя, получаемое при подаче горючей смеси через узкую короткую трубку в трубу большего диаметра, сообщающуюся с внешним воздухом только в верхней ее части. В этом слзгчае можно различить следующие три зоны пламени зону предварительного подогрева газовой смеси, зону горения (или зону реакции) и зону сгоравших газов. В зоне подогрева происходит постепенное повышение температуры, обусловленное передачей тепла от зоны горения и тепловыделением в результате медленных реакций, развивающихся вследствие повышения температуры и диффузии активных центров из зоны горения (см. ниже). При некоторой температуре (температура воспламенения) подогретая смесь воспламеняется — возникает зона горения с характерной для нее высокой температурой и обусловленной ею (а также высокой концентрацией активных центров) большой скоростью реакции. Протяженность (толщина) зоны горения обычно невелика и в случае обычных горячих пламен составляет величину порядка 0,1 мм (см., например, рис. 129). В этих случаях зону горения называют фронтом пламени. Вследствие большой скорости реакции концентрация активных центров во фронте пламени не успевает прийти к равновесию и обычно на несколько порядков превышает равновесную концентрацию при максимальной температуре пламени. Значительно превышающие равновесные значения имеют также концентрация электронов и интенсивность излучения фронта пламени. Однако абсолютные концентрации, активных частиц, как и концентрации электронов (и ионов) во фронте пламени, относительно невелики, а излучение света не играет существенной роли в тепловом балансе горячих пламен. Поэтому даже значительные отклонения концентраций атомов, радикалов и ионов и интенсивности излучения от равновесных значений не могут сказаться на величине конечной (максимальной) температуры Замени, устанавливающейся по завершению реакции горения на границе фронт пламени — зона сгоревших газов п определяющейся термодинамическим равновесием продуктов реакцип. [c.477]


    Б табл. 3.4 приведены результаты расчета газового состава и температуры пламени воздух — ацетилен и оксид азота (I) — ацетилен для различных соотношений окислитель — горючий газ, выполненного Львовым с сотр. Расчеты проведены исходя из предположения о термодинамическом равновесии. Результаты представлены в виде зависимости температуры и состава от параметра а, характеризующего мольное отношение окислитель горючий газ для стехиометрического процесса (сгорание до СО2 и Н2О) а=1. Таким образом, значения >1 соответствуют обедненным смесям, а значения а<1 — обогащенным смесям. Расчеты для пламен воздух — ацетилен и оксид азота(I) — ацетилен выполнены при а = 0,20—0,60 (более обедненные пламена на практике не используют, так как вследствие поступления воздуха из атмосферы во внешние зоны они неустойчивы). [c.113]

    При расчетах температуры пламен предполагается наличие в пламени равновесия по всем степеням свободы. Однако результаты определений температуры пламени спектральными методами свидетельствуют о том, что термодинамическое равновесие в пламени не полное. Наиболее часто температуры пламени измеряют методом обращения спектральной линии натрия. Если в пламя введены пары натрия, наблюдается излучение двух желтых В-линий натрия с длинами волн 5890 и 5896 А. Если излучение яркого источника проходит через [c.534]

    Очевидно, что в подобного типа электрических разрядах температура электронов намного выше температуры газа Тт, т.е. здесь имеет место хотя и стационарное, но отнюдь не равновесное состояние заселение верхних уровней происходит за счет ударов первого рода, а переход возбужденных атомов и ионов на нижележащие уровни (девозбуждение) — в основном за счет спонтанной эмиссии. В описанных случаях, конечно, можно говорить лишь о той или иной степени приближения к использованным выше теоретическим моделям. Так, газ в электротермическом атомизаторе настолько близок к состоянию термодинамического равновесия, что имеющимися незначительными отличиями можно для практических целей полностью пренебречь для описания же общих свойств пламен модель термодинамически равновесной плазмы, строго говоря, не годится. В частности, многие пламена интенсивно излучают в инфракрасной области спектра, в то время как энергетические потери на излучение покрываются за счет нагревания газа в ходе реакции горения. Таким образом принцип детального равновесия в пламенах не выполняется даже грубо приближенно. Тем ие менее для описания механизма поглощения и излучения отдельных спектральных линий атомов в пламенах оказывается возможным при определенных условиях воспользоваться законами теплового излучения, в частности, законом Кирхгофа. То же можно сказать о некоторых формах электрических разрядов. В этих случаях отпадает необходимость в оценке эффективных сечений элементарных процессов, так как распределение атомов по возбужденным состояниям оказывается возможным рассчитать более простыми способами. [c.23]

    Пламена при атмосферном давлении могут иметь концентрацию радикалов и в особенности концентрацию атомов водорода, которая значительно больше рассчитанной на основе термодинамического равновесия при температуре пламени. Такое предположение, высказанное Артуром [108], получило подтверждение в работе Булевича, Джеймса и Сагдена [98], которые приводят пример такой сверхравновесной концентрации. Если при высокой температуре вычисленное и измеренное значения концентрации атомов водорода превосходно согласуются, то при уменьшении температуры различие между ними становится все более и более значительным. Наконец, ниже 2000 К температура слабо влияет на концентрацию атомов водорода. Это особенно проявляется при горении богатых смесей газов. [c.238]

    В реальной плазме полное термодинамическое равновесие невозможно. В ней имеют место процессы потери энергии, происходящие вследствие излучения, теплопроводности, ухода быстрых частиц и т. п. С другой стороны, энергия плазмы ненрерывно пополняется благодаря прохонодению электрического тока или химическим реакциям (пламя). В стационарном состоянии мощность, поступающая в плазму, равна потерям. Насколько далеко плазма ири этом отступает от термодинамического равновесия, зависит в первую очередь от соотношения между числом столкновений в единицу времени и величиной энергетических потерь. При больших давлениях, когда число столкновений велико, энергетическое равновесие между частицами устанавливается быстро, и если при этом отдаваемая (а следовательно, и подводимая) мощность невелика, то плазма практически равновесна. Это обычно имеет место в дугах и искрах, горящих при атмосферном давлении, хотя и в этих случаях можно наблюдать отклонения от термически равновесного состояния. В газовом разряде при низком давлении (когда длина свободного пробега частиц велика) отступления от равновесия выражены очень отчетливо. В первую очередь это сказывается в том, что электроны, ускоряемые электрическим нолем, имеют в среднем гораздо большую кинетическую энергию, чем атомы, иначе говоря, электронная температура гораздо выше температуры атомов, а температура ионов в свою очередь обычно выше температуры атомов и ни ке температуры электронов. Таким образом, в термически неравновесной плазме как бы сосуществуют несколько газов, каждый из которых имеет свою температуру, причем эти температуры могут очень сильно отличаться друг от друга. Так, в гейслеровском разряде при давлении около 1 мм рт. ст. температура электронов может достигать 10000— 15 000° К, в то время как температура газа не превышает нескольких сот градусов. [c.23]



Смотреть страницы где упоминается термин О термодинамическом равновесии в пламенах: [c.233]    [c.37]   
Смотреть главы в:

Кинетика химических газовых реакций -> О термодинамическом равновесии в пламенах




ПОИСК





Смотрите так же термины и статьи:

Равновесие термодинамическое



© 2025 chem21.info Реклама на сайте