Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциометрические определения при помощи комплексона

    ПОТЕНЦИОМЕТРИЧЕСКИЕ ОПРЕДЕЛЕНИЯ ПРИ ПОМОЩИ КОМПЛЕКСОНА 81 [c.81]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]


    Физико-химические методы установления точки эквивалентности в комплексонометрии. Различные физико-химические методы обычно используют для установления оптимальных условий титрования. Кроме того, с помощью физико-химических методов можно проводить определения элементов, для которых еще не найдены цветные индикаторы, а также определять несколько элементов в одном растворе без предварительного химического разделения. Потенциометрическое титрование комплексоном выполняют с помощью ионоселективных электродов или используют инертные электроды из благородных металлов (Р1, Аи), реаги- [c.244]

    Беркович М. Т., Сирина А. М., Лагунов Н. Л. Физико-химические методы определения алюминия и железа в хромитах и шихте. Сообщ. 2. Потенциометрическое определение алюминия и железа (III) с помощью комплексона III.— В кн. Методы анализа по контролю производства основной химической промышленности. М.— Л., Химия , 1964, 32—37 (Ураль- [c.161]

    Потенциометрическое определение комплексона III при помощи соли двухвалентной ртути. [c.181]

    Объемные определения при помощи комплексонов можно в принципе разделить на две группы. К первой относится ациди-метрическое титрование катионов, при котором любым способом, визуальным или потенциометрическим, титруют водородные ионы, выделяющиеся при образовании комплексных соединений. Ко второй группе относится прямое титрование титрованным раствором комплексона в присутствии специфических индикаторов на тот или иной катион. Изменение концентрации катионов при прямом титровании комплексоном можно обычно проследить амперометрическим и в некоторых случаях потенциометрическим методом. [c.39]

    При определении никеля применяется также индикация точки эквивалентности с помощью инструментальных методов. Описано потенциометрическое определение ультрамикроколичеств никеля с использованием ртутного электрода [525] спектрофотометрический метод применен для последовательного определения кобальта и никеля при одновременном их присутствии и основан на различии в максимумах поглощения комплексов этих металлов с этилендиаминтетрауксусной кислотой [526]. Чаще спектрофотометрическое определение никеля основано на определении интенсивности окраски комплексов никеля с диметилглиоксимом [527—530] или другими органическими комплексообразующими соединениями [531, 532]. В этих случаях комплексоны используют в качестве маскирз-ющих средств для устранения мешающего влияния других катионов. В частности, описано [529] применение этилендиаминтетраиропионо-вой кислоты для маскирования меди. [c.305]


    Значите.льно чаще используют комплексон III в качестве маскирующего агента для устранения мешающего влияния катионов при определении серебра весовым [603—610], колориметрическим [611, 612] и спектрофотометрическим [613—618] методами. В присутствии комплексона III возможно определение серебра титрованием в щелочной среде раствором цианида калия в присутствии индикаторов [619] или с помощью и-диметиламинобензилиденроданида [620]. Описано также потенциометрическое и амперометрическое определение серебра [621—623]. Комплексон III обеспечивает селективную экстракцию серебра из растворов в присутствии ряда катионов — Си , , [c.307]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Ход определения. Пробу исследуемого растительного материала разрушают обработкой азотной и хлорной кислотами. К аликвотной части раствора добавляют 10 мл 2%-ного раствора оксихинолина (в 4%-ном растворе уксусной кислоты) и добавлением аммиака доводят pH раствора до значения 5,25 (контролируя потенциометрически). Полученный раствор нагревают почти до кипения и фильтруют непосредственно в делительную воронку емкостью 125 мл. По охлаждении раствор взбалтывают дважды с 10 лгл четыреххлористого углерода. Затем прибавляют к раствору 5 мл 1%-ного раствора купраля и снова встряхивают около 2 мин. с 10лгл четыреххлористого углерода. Присутствующий в исследуемом растворе марганец переходит в слой органического растворителя в виде комплекса фиолетового цвета. Экстракцию повторяют со следующим 1 лгл раствора купраля. Спускают водный слой в стакан и удаляют из него растворитель кипячением. Присутствующий в растворе кальций осаждают при 90° добавлением 5 мл насыщенного раствора оксалата аммония и оставляют в покое на ночь. Затем сливают раствор с осадка при помощи стеклянной палочки и доводят его объем до 100 мл. В аликвотной части раствора определяют магний титрованием раствором комплексона в присутствии эриохрома черного Т. К оттитрованному до конечной точки раствору прибавляют около 1 мл избытка [c.458]

    Кобальт. Соединение трехвалентного кобальта с комплексоном III восстанавливается раствором хлорида двухвалентного хрома [173]. Для количественного определения двухвалентного кобальта его окисляют в форме соединения с комплексоном III при помощи сульфата четырехвалентного церия или же бихромата калия (другие окислители непригодны по разным причинам) и затем трехвалентный кобальт титруют потенциометрически раствором хлорида двухвалентного хрома при 50—60° после удаления избытка окислителя. Определению кобальта не мешает ряд элементов. [c.152]


Смотреть страницы где упоминается термин Потенциометрические определения при помощи комплексона: [c.63]    [c.142]    [c.245]   
Смотреть главы в:

Комплексоны в химическом анализе -> Потенциометрические определения при помощи комплексона

Комплексоны в химическом анализе -> Потенциометрические определения при помощи комплексона




ПОИСК





Смотрите так же термины и статьи:

Комплексоны

Потенциометрическое определение определение

потенциометрическое



© 2025 chem21.info Реклама на сайте