Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма трехвалентная, сть солей

    Все соли мышьяка, сурьмы и висмута в водных растворах подвергаются гидролизу. Соли трехвалентных сурьмы и висмута гидролизуются с образованием основных солей. [c.129]

    Чтобы ускорить процесс восстановления или окисления (см. раздел о факторах, влияющих на восстановление и окисление, стр. 329—330 и 346), помимо веществ, необходимых для создания проводимости раствора, в раствор добавляют небольшие количества солей и других соединений. Промоторами восстановления являются соли меди, титана, олова, свинца, ванадия и молибдена, окислы мышьяка и сурьмы и кетоны. Промоторами окисления служат различные окисляющие агенты, например, феррицианид калия и соли четырехвалентного церия II трехвалентного марганца. [c.322]


    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    Получение сульфидов. Действием сероводородной воды на растворы солей трехвалентного мышьяка, сурьмы и висмута, подкисленные соляной кислотой, получить осадки сульфидов. Составить уравнения реакций, отметить цвета выпавших осадков. Почему необходимо брать подкисленные растворы  [c.271]

    Разделение диэтилдитиокарбаминатом натрия. Диэтилдитио-карбаминат натрия реагирует в водных растворах с солями сурьмы, висмута, кадмия, хрома, кобальта, железа двух- и трехвалентного, свинца, марганца, ртути, никеля, серебра, олова, урана, цинка и других металлов, образуя окрашенные в различные цвета осадки [533]. Диэтилдитиокарбаминат кобальта [c.75]

    Элементы мышьяк, сурьма и висмут в водных растворах могут присутствовать в трехвалентном состоянии в виде свободных положительных ионов Аб , 8Ь" и В1" . Однако соответствующие этим ионам соли проявляют большую склонность к гидролизу. Для мышьяка суш ествует равновесие [c.626]

    Написать в ионной и молекулярной форме уравнения реакций получения сульфида трехвалентной сурьмы получения соли тиосурьмянистой кислоты разрушения тиосоли в кислой среде. Какой химический характер сульфида трехвалентной сурьмы подтверждается этим опытом Можно ли получить соль тиосурьмяной кислоты Проверьте ваш ответ, повторив опыт с раствором хлорида пятивалентной сурьмы, полученной в опыте 4. [c.171]


    Соли, у которых сурьма трехвалентна. Они большею частью белого цвета, в водном растворе подвергаются гидролитическому расщеплению, причем образуются нерастворимые в воде основные соли, являющиеся большею частью производными одновалентной группы SbO" (антимонил). В сильнокислом растворе содержится бесцветный катион Sb—. i [c.192]

    Типичным примером применения данной группы комплексов является определение сурьмы. Трехвалентная сурьма дает с ионами иода комплексную кислоту НЗЬЛ4, имеющую слабожелтую окраску. Прибавление пиридина (СзНзЫ) приводит к образованию мало растворимой соли 5H5N характеризующейся значительно большей интенсивностью окраски. Если вместо пиридина прибавить органический краситель основного характера, на- [c.211]

    В стадии нейтрального выщелачивания (проводят в отдельных емкостях) раствор донейтрализовывают свежим огарком до pH 5—5,5. При этом на первых стадиях очистки раствора от нежелательных примесей происходит гидролиз солей алюминия и трехвалентного железа, частично выпадают мышьяк и сурьма в виде нерастворимых основных солей [по-видимому, Ре405(0Н)5Аз], увлекаемых в осадок гидроокисями алюминия и железа, или же выводится в осадок весьма вредная примесь электролита — германий. [c.271]

    К кислому раствору соли мышьяка (III) или сурьмы (III) прибавляют немного раствора иода. Окраска не меняется. После добавления твердого NaH O трехвалентные мышьяк и сурьма окисляются (исчезновение окраски почему нельзя добавлять Nai Oi ) При подкислении этого раствора иод опят1ь выделяется в свободном состоянии  [c.596]

    Главная подгруппа. Все отрицательно трехвалентные элементы и азот гидразина и гидроксиламина и их производных в комплексных соединениях тетракоординационнью (аммониевые, фосфониевые и т. п. соли, и комплексные амины). При этом прочность комплексов уменьшается при переходе в подгруппе сверху вниз. Замещенные фосфины, арсины и стибины координируются ионами многих металлов. При этом насыщается координационное число фосфора, мышьяка или сурьмы. [c.205]

    Из соединений трехвалентного мышьяка практически наиболее важен мышьяковистый ангидрид, являющийся основным исходным продуктом для получения остальных производных Аз. Непосредственно он применяется в стекольной промышленности (для обесцвечивания стекла), как консервирующее средство (в меховой промышленности и т. д.) и в медицине. Небольшие количества АзгОз благотворно действуют на организм человека и животных (а по некоторым данным — и растений). Установлено, что добавление АзгОз в корм скоту заметно повышает его рост и работоспособность. Окись сурьмы (ЗЬгОа) применяется для получения различных эмалей и глазурей, окись висмута — при производстве хрусталя. Из солей наибольшее значение имеет основная азотнокислая соль висмутила приблизительного состава В 0(Ы0з) ВЮ(ОН), используемая в медицине при желудочных заболеваниях. Соль эта применяется также в косметической промышленности и при изготовлении красок для живописи. [c.472]

    Двух-, а иногда и многоступенчатое выщелачивание применяют чаще, главным образом, при работе со слабо кислым растворами (100—200 г/л кислоты). При этом на стадии кислого выщелачивания содержание кислоты доводят до 3—5 г/л (рНл 1). В кислую пульпу вводят обычно марганцевую руду для окисления ионов железа. В стадии нейтрального выщелачивания (проводят в отдельных емкостях) раствор донейтрали-зовывают свежим огарком до рН = 5—5,5. При этом протекает первая стадия очистки раствора от нежелательных примесейи Происходит гидролиз солей алюминия и трехвалентного железа, частично выпадают мышьяк и сурьма в виде нерастворимых основных солей [по-видимому, Ре405(0Н)5Аз], увлекаемых в осадок гидроксидами алюминия и железа, и выводится в оса док весьма вредная примесь — германий. Иногда, если в растворе присутствует слишком много мышьяка, сурьмы и германия, в него специально добавляют железо. На этой же стадии процесса в виде геля выпадает кремнекислота. [c.386]

    Индий, трехвалентное железо и сурьма практически полностью экстрагируются четыреххлористым углеродом в форме диэтилдитиокарбаминатов при pH 5—10 из тартратсодержащего раствора [125, 126]. Ионы Ag, В1, С(1, Со, Си, Hg , N1, РЬ, С(1, ТР, Т[1 и Ъп экстрагируются при pH 5—И. Низшая граница pH практически полной экстракции определяется разложением диэтилдитиокарбамината. В присутствии динатриевой соли этилендиаминтетрауксусной кислоты ипди11 частично экстрагируется при pH 5—7, при более высоких pH индий совсем не экстрагируется. Добавление K N к тартратному раствору не изменяет области pH количественной экстракции диэтилдитиокарбамината индия. [c.158]

    Растворы соединений других элементов взаимодействуют со всеми производными дитиофосфорной кислоты следующ им образом. Белый осадок вольфрамовой кислоты, образующийся при добавлении соляной кислоты к раствору вольфрамата натрия, медленно восстанавливается всеми реагентами до вольфрамовой сини, а желтый солянокислый раствор ванадата аммония довольно быстро переходит в зеленый. Соли уранила и титана не дают реакций окрашивания. Серебро, двухвалентная ртуть, свинец, одновалентный таллий, кадмий, мышьяк выделяются в виде белых, а висмут и олово — желтых аморфных осадков. Сурьма образует осадки желтого или слабо-желтого цвета. Одновалентная ртуть и трехвалентное железо дают черные, а иедь желто-зеленые осадки. Соли никеля образуют муть сиреневого цвета, растворимую в этиловом эфире с образованием красно-фиолетового раствора. Соли кобальта образуют соединения грязно-оранжевого цвета, растворимые в эфире с образованием оранжевого раствора. Соли многих других элементов не дают осадков или окрашивания. Таким образом, большинство изученных производных дитиофосфорной кислоты можно считать селективными реагентами на молибден, поскольку при определенных условиях они образуют с молибденом характерное малиновое или красное окрашивание. [c.79]


    Раствор может содержать осадок продуктов гидролиза солей висмута, сурьмы и трехвалентного железа. Для растворения осадка прибавляют немного раствора HNO3 и нагревают до кипения. При этом основные соли висмута и железа полностью растворяются, а соли сурьмы остаются в осадке. Осадок отфильтровывают, промывают и растворяют в 1 н. растворе винной кислоты. В полученном растворе открывают сурьму реакцией с метиловым фиолетовым. [c.59]

    Отделение кобальта фенилтиогидантоиновой кислотой. Фенилтиогидантоиновая кислота СбНзЫНСЗЫНСНзСООН, впервые предложенная как реагент обнаружения кобальта [1193], применяется для отделения кобальта от ряда элементов. Реагент выделяет ионы кобальта в а.м.миачно.м растворе в виде пурпурнокрасного осадка непостоянного состава. В аммиачно-цитратном растворе осаждаются полностью также сурьма и медь, частично никель, хотя осадок никелевой соли растворим в концентрированном аммиаке. Соли трехвалентного железа также несколько загрязняют осадок фенилтиогидантоината кобальта. Однако ионы мышьяка, урана, ванадия, титана, вольфрама, молибдена, цинка, марганца, хрома, алюминия, магния и кальция осадков не образуют. Методика отделения такова [1490]. [c.70]

    Разделение триэтаноламином N (СН2СН20Н)з. Триэтанол-амин образует с кобальтом растворимое комплексное соединение карминово-фиолетового цвета, соли никеля и меди дают растворы, окрашенные в синий цвет. Катионы ртути (1), свинца, серебра, кадмия, ртути (II), висмута, олова, железа, алю.миния, хро.ма и цинка образуют осадки различного цвета. Триэтанол-амин применяется для качественного обнаружения кобальта [747, 868], для разделения кобальта и никеля [1224], отделения железа от кобальта и никеля [954] и как групповой реагент в качественно.м анализе [276]. В последне.м случае при прибавлении 20%-ного раствора триэтаноламина к растворам, содержащим катионы алюминия, марганца, цинка, висмута, олова (II), сурьмы и железа(II), образуются осадки, нерастворимые в избытке триэтаноламина, а катионы трехвалентного хро.ма,. меди, кобальта и никеля образуют окрашенные растворимые соединения катионы ртути, свинца и четырехвалентного олова в этих условиях дают бесцветные растворимые комплексы. [c.71]

    Добавление редактора. 13. Фосфорномолибденовая и бромистоводородная кислоты . Соли одновалентного таллия дают с фосфорномолибденавой кислотой фосфоромолибдат одновалентного таллия. Если к последнему прибавить концентрированную броми стоводородную кислоту, то образуются молибденовая синь и бромид трехвалентного таллия. Эта весьма чувствительная реакция может быть использована для открытия таллия(1). Необходимо толыко отсутствие таких восстановителей, котарые образуют с фосфорномолибденовой кислотой молибденовую синь, например соли меди(1), олова(2), сурьмы(З), железа(2) и др. [c.621]

    По данным классической полярографии и осциллополярографии хорошо выраженные волны дают во многих органических растворителях ионы трехвалентных сурьмы и висмута [892, 1153, 722, 1052, 904, 1123, 1066, 146, 1047, 785]. Процесс восстановления в основном изучен на галогенидных солях. Наблюдалось как одноступенчатое [1052, 1128, 785, 226], так и многоступенчатое [722, 146] восстановление до металла. Потенциалы выделения, как правило, более положительны, чем в водных растворах, что свидетельствует о низкой энергии сольватации ионов в соединениях Sb(III) и Bi(III) в органических средах. В случае двухступенчатого разряда ионов соединения Sb(III) медленной ступенью служит первая ступень присоединения двух электронов [146]. Для обоих металлов процесс электровосстановления имеет преимуще-ственно диффузионный характер. В результате исследования электрохимического поведения иона Bi(III) в спиртовых и водноспиртовых растворах отмечено нарушение пропорциональности между концентрацией Bi la и величиной предельного тока [1123]. [c.95]

    В случае трудноразлагающихся проб можно применить смесь азотной и серной кислоты, вообш,е же добавлять окислители нежелательно, так как мышьяк и сурьма должны оставаться в трехвалентном состоянии. Кроме того, при высоком содержании сурьмы не исключена возможность выпадения части ее в осадок при действии азотной кислоты. После разложения пробы добавляют 1 —1,5 г гидразина для восстановления пятивалентных мышьяка и сурьмы (если они присутствовали в пробе), упаривают раствор до влажных солей, что необходимо для разрушения избыточного количества гидразина. После охлаждения добавляют сегнетову соль или винную кислоту для предотвращения гидролиза соединений мышьяка и сурьмы в количестве, превышающем величину навески в 5—8 раз приливают 20—30 мл воды, переносят содержимое стакана, не отфильтровывая осадка, в мерную колбу емкостью 50 — 100 мл, доводят водой до метки. Перемешивают, дают отстояться и отбирают две аликвотные [c.268]

    Написать ионные уравнения первой и второй ступени гидролиза хлорида трехвалентной сурьмы и общее уравнение ее гидролиза. Написать формулу для вычисления константы гидролиза хлорида сурьмы для первой ступени. Показать при помощи этой константы, как влияет разбавление на степень гидролиза этой соли. Добавлением какого реактива можно сместить равновесие гидролиза хлорида сурьмы в обратном направлении Проверить свое заключение опытом. [c.81]

    Выполнение работы. В пробирку с раствором бихромата калия К2СГ2О7 (1—2 капли) внести 5—б капель раствора хлорида сурьмы 5ЬС1з. Нагреть пробирку слабым пламенем горелки. Наблюдать изменение окраски раствора, обусловленное переходом бихромата калия в соль трехвалентного хрома, и выпадение осадка сурьмяной кислоты (хЗЬгОа г/Н20). [c.96]

    Гидрат трехокиси сурьмы в антимониты [автимоваты(Ш)]. Если раствор рвотного камня (см. стр. 723) нри пониженной температуре (0°) обработать разбавленной соляной или серной кислотой, то образуется объемистый белый осадок, который обладает свойствами геля и содержит переменное количество воды. Осторожным высушиванием содержание воды в осадке можно довести до такого, которое приблизительно соответствует гидроокиси трехвалентной сурьмы ЗЬ(ОН)з однако остается неясным, содержится ли 8Ь(ОН)з в осадке как индивидуальное соединение. Если вести разложение при более высокой темНературе, то образуется осадок, который в воздушно-сухом состоянии содержит меньше воды, чем это соответствует формуле гидроокиси. Гидролиз 8ЬС1з при температуре выше 40° непосредственно ведет к образованию кристаллического безводного ЗЬаОд. Гель гидрата трехокиси сурьмы с большой активной поверхностью даже под водой постепенно переходит в кристаллический окисел. Трехокись сурьмы растворяется в кислотах с образованием солей сурьмы(П1) (см. стр. 723). Если трехокись сурьмы обработать щелочью, то образуются антимониты [антимонаты(1П)], т. е. соли метасурьмянистой кислоты, например [c.717]

    Ион [5Ь(С204) з] образует устойчивые соли. Он, как было установлено, имеет строение неполной пентагональной пирамиды (рис. 17.3), в которой одно из аксиальных положений занимает неподеленная электронная пара. Комплексы трехвалентной сурьмы с винной кислотой подробно изучены и более 300 лет используются в медицине как рвотный камень . Структура аниона этой, соли К2[5Ь2( /-С4Н20б)2]-ЗНгО показана на рис. 17.4. [c.350]

    В этом варианте ИВИ концентрирование является результатом взаимодействия одной из валентных форм определяемого элемента с органическим ионом или молекулой, сопровождающегося образованием малорастворимого соединения на поверхности электрода. Условием электрохимического концентрирования элемента в виде соединения с органическим реагентом, так же как и при концентрировании в виде гидроокисей и неорганических солей, является селективность органического реагента относительно той валентной формы определяемого иона, которая образуется при электродной реакции, и индифферентность к ионам определяемого элемента в исходном валентном состоянии. Так, кристаллический фиолетовый и родамин С могут применяться для электрохимического выделения сурьмы из солянокислого раствора, поскольку они осаждают ионы [5ЬС1б] , которые получаются при анодном окислеиии ионов трехвалентной сурьмы, и не связывают в осадок 8Ь +. При концентрировании элемента анализируемый раствор, содержащий органический реагент, подвергают электролизу при потенциале электрода, достаточном для окисления или восстановления (превращения в [c.97]


Смотреть страницы где упоминается термин Сурьма трехвалентная, сть солей: [c.567]    [c.271]    [c.54]    [c.275]    [c.657]    [c.148]    [c.162]    [c.155]    [c.152]    [c.160]    [c.657]    [c.822]    [c.170]    [c.192]    [c.309]    [c.312]    [c.319]    [c.722]    [c.189]    [c.132]    [c.218]    [c.24]   
Курс аналитической химии Том 1 Качественный анализ (1946) -- [ c.499 ]




ПОИСК







© 2025 chem21.info Реклама на сайте