Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика электрохимического растворения никеля

    Кинетика электрохимического растворения никеля [c.38]

    Поведение металлов в процессе анодного растворения исследовано не так полно, как при их катодном осаждении. Все же по-.лученные опытные данные подтверждают применимость основных положений теории электрохимического перенапряжения к металлам группы железа. Так, кинетика анодного растворения железа и никеля описывается формулой Тафеля [c.477]


    Поляризация катодного выделения водорода, имеющая обычно электрохимическую природу, в существенной мере определяется материалом катода и практически не зависит от концентрации электролита [207]. Величина pH оказывает влияние на поляризацию процесса лишь при низких плотностях тока. Из побочных реакций, которые могут протекать на катоде, следует отметить процесс катодного восстановления сравнительно электроположительных катионов (например, меди, никеля), перешедших в раствор с анода [115]. Данный процесс облегчается в кислых средах. В достаточно концентрированных подкисленных нитратных электролитах может происходить катодное восстановление анионов N0 до анионов N0 , а при значительном отрицательном смещении потенциала до образования аммиака [184]. Восстановление катионов нейтрального электролита (обычно К" , Ма+) невозможно вследствие очень низких электроотрицательных значений их равновесных потенциалов, которые обычно не достигаются в условиях анодного растворения металлов. При исследовании кинетики анодного растворения металлов широко применяются методы снятия поляризационных кривых и температурно-кинетический метод. Рассмотрим несколько примеров использования этих методов применительно к анодному растворению металлов и сплавов различной природы. [c.35]

    Возможность пассивации не предсказывается равновесной диаграммой потенциал — pH, однако именно пассивация является одной из причин того, что на практике коррозионная стойкость никеля в кислых растворах оказывается лучше, чем это следует из рассмотрения условий термодинамического равновесия. Вторая и, возможно, более важная причина связана с тем, что активная область (ЛВС) при анодной поляризации никеля значительно больше, чем при анодной поляризации многих других металлов. Этот факт, а также то, что в электрохимическом ряду никель лишь слегка отрицателен по отношению к равновесию Н+/Нг, означает, что на практике скорость растворения никеля в кислых растворах будет небольшой в отсутствие более сильных окислителей, чем Н+, или веществ, способных ускорять кинетику анодной реакции. [c.138]

    Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата I 48, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [62] и бихромата калия [63]. [c.13]


    Коррозия металлов причиняет огромный экономический ущерб. Она существенно ограничивает срок службы металлических конструкций, трубопроводов, котлов, автомобилей и т. д. Уменьшить коррозию, изменив среду, в которой находится металл, часто просто невозможно. Поэтому защита от коррозии осуществляется либо путем подбора металла или сплава, либо путем подходящей обработки поверхности металла. При выборе способа защиты необходимо принимать во внимание законы электрохимической кинетики (хотя совсем недавно это делалось чисто эмпирически). Нержавеющую сталь изготавливают, вводя в сплав никель или хром. Последние легко образуют анодные пленки, переводящие сталь в пассивное состояние по аналогии можно осадить никель и хром на поверхности стали. Защитные пленки получают также, обрабатывая поверхность стали фосфорной кислотой. Кроме замедления скорости растворения, эти пленки препятствуют диффузии электроактивных веществ (ионов гидроксония, кислорода) к поверхности металла и ингибируют их катодные реакции. Такую же роль по существу играют наносимые на поверхность металла покрытия из органических материалов, особенно полимеров. [c.156]

    Важным этапом в развитии этих представлений явились работы Я. М. Колотыркина и А. Н. Фрумкина по исследованию закономерностей растворения свинца и никеля в кислотах. Было установлено количественное совпадение скоростей коррозии, определенных по объему выделяющегося водорода и рассчитанных на основе электрохимических измерений. Тем самым впервые было показано, что не только амальгамы, но и твердые металлы растворяются в полном соответствии с закономерностями электрохимической кинетики. [c.228]

    В развитии и обосновании этих представлений основная заслуга принадлежит советским ученым. Исследуя растворение железа в щелочах, Б. Н. Кабанов и Д. П. Лейкис впервые пришли к выводу о непосредственном участии ионов ОН в первичной стадии анодной реакции. Б. В. Эршлер обнаружил ускоряющее действие ионов 01 на анодное растворение платины в кислых растворах. Систематические данные по влиянию анионов получены Я. М. Колотыркиным с сотрудниками при исследовании кинетики растворения кадмия, железа, никеля, индия, висмута и амальгам двух последних металлов в кислых растворах электролитов. Была установлена специфичность этого влияния, т. е. зависимость величины и даже знака наблюдаемого эффекта (изменение скорости реакции) как от природы самого аниона, так и от природы металла. На основании кинетических и адсорбционных измерений Я. М. Колотыркин пришел к выводу, что влияние анионов на анодный процесс связано с их специфической адсорбцией на поверхности металла, которая предшествует собственно электрохимической стадии. [c.231]

    Скорость анодного растворения никеля [4301 и кобальта [431 1 также возрастает с увеличением pH кислого раствора, что свидетельствует в пользу сходного механизма ионизации металлов группы железа. Колотыркин и сотр. [428, 429, 432] показали, что при анодном растворении железа, никеля и сталей в медленной электрохимической стадии наряду с ОН -ионами непосредственно участвуют SO - - и С1 -ионы. Киш и сотр. [433] для процесса ионизации железа в безводных уксуснокислых растворах установили первый порядок по свободным ацетат-ионам и наклон тафелевской зависимости = = 62+3 мВ. На основании этого они сделали вывод о медленном протекании двуэлектронной электрохимической стадии, в которой участвует один ацетат-ион. Другие работы, посвященные исследованию кинетики и механизма анодного растворения металлов группы железа, обсуждаются в обзоре [424]. [c.199]

    Если при наложении положительного потенциала весь ток или его большая часть расходуется на растворение металла (его переход в раствор в виде ионов), то металл находится в активном состоянии и, следовательно, не может быть использован в этих условиях в качестве анода. Если же при анодной поляризации ток практически полностью расходуется на другой процесс, для протекания которого требуется более положительный потенциал, чем для раствореция металла (например, выделение кислорода на никеле при электролизе воды), в этом случае металл пассивен и может служить анодным материалом. Пассивация вызывает существенное изменение поверхностного слоя металла, благодаря чему становится возможным протекание процесса, требующего большей затраты энергии, тогда как растворение металла — более легкий процесс в отношении затраты энергии — полностью прекращается или протекает с очень малой скоростью. При этом нарушается закон электрохимической кинетики, согласно которому скорость анодного растворения металла должна возрастать при увеличении потенциала электрода. При изменении условий, в которых находится металл, состояние пассивности в ряде случаев может быть нарушено. Поэтому изменения плотности тока (или потенциала металла), концентрации электролита, температуры или других условий поляризации, иногла совсем незначительные, могут служить причиной перехода металла из пассивного состояния в активное и наоборот. [c.206]



Смотреть страницы где упоминается термин Кинетика электрохимического растворения никеля: [c.134]    [c.545]    [c.53]   
Смотреть главы в:

Инверсионная вольтамперометрия твердых фаз -> Кинетика электрохимического растворения никеля




ПОИСК





Смотрите так же термины и статьи:

Кинетика электрохимическая



© 2025 chem21.info Реклама на сайте