Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы введения нитрогруппы

    Другие методы введения нитрогруппы [c.88]

    Обсуждение всех этих методов введения нитрогруппы сопровождается разделом, в котором рассматриваются другие разнообразные реакции, имеющие лишь ограниченное применение, а также реакции, о которых мало что можно сказать из-за недостатка данных. [c.117]

    Прямое введение нитрогрупп в молекулу является одним из главных способов получения нитросоединений. Выбор нитрующих агентов, применяемых для нитрования, зависит от свойств нитруемого соединения и желаемой степени нитрования. Наиболее часто употребляемым нитрующим агентом является азотная кислота или серно-азотная кислотная смесь (см. стр. 52). Однако в некоторых случаях приходится применять другие нитрующие средства, такие, как смеси азотной кислоты с уксусной кислотой или уксусным ангидридом, соли азотной кислоты, окислы азота или же использовать косвенные методы введения нитрогруппы. [c.73]


    Здесь нельзя исходить ни из фенола, ни из анилина, так как в обоих случаях получится пара-изомер. В этом случае пользуются методом предварительного введения заместителей другого рода (нитрогруппы и сульфо-группы)с последуюш,им превращением их в требуемые группы. К этому же случаю относится и пример термического хлорирования динитробензола (см. 3), при котором получается мета-дихлорбензол [c.23]

    Как уже указывалось, для введения нитрогруппы в ароматическое кольцо наиболее широко используется прямое нитрование (стр. 131—133). Очевидно, что этот метод непригоден в тех случаях, когда ориентация, обусловленная присутствующим заместителем, не приводит к желаемому изомеру. Так, п-динитробенаол и /г-нитробензойная кислота не могут быть получены прямым нитрованием, поскольку нитрование нитробензола и бензойной кислоты дает почти исключительно ж-динитробензол и Л4-нитробензойную кислоту соответственно. Для получения п-изомеров необходимо прибегать к менее прямым способам. Тактика синтеза состоит в использовании производных бензола с такими заместителями, которые оказывают при нитровании нужное ориентирующее действие, и последующем видоизменении этих заместителей, приводящем к желаемому конечному продукту. Так, п-динитробензол может быть синтезирован из анилина путем нитрования ацетанилида (ацетиламинобензола) с последующим гидролизом в /г-нитро-анилин и замещением аминогруппы на нитрогруппу действием нитрит-иона на соответствующую диазониевую соль в присутствии солей одновалентной меди (стр. 219). С другой стороны, аминогруппа в тг-нитроанилине [c.197]

    Большинство обычных методов введения аминогруппы в органические соединения нелегко приспособить для микропрепаративной работы. Как было указано в гл. V, раздел И, 4, для аминирования миллиграммовых количеств веществ может быть использовано каталитическое гидрирование нитрогрупп и в меньшей степени цианогрупп. Основным затруднением при определении большинства реакций аминирования является одновременное образование нескольких продуктов (обычно первичных, вторичных и третичных аминосоединений), поэтому процесс аминирования необходимо проводить в таких условиях, при которых образование нежелательных продуктов по возможности подавляется. Это можно проиллюстрировать на примере аммонолиза галоидалкилов или алифатических а-галоидкислот с целью получения первичных аминосоединений. В литературе для этой реакции рекомендуется брать на каждый моль галоидного соединения 10—60 молей водного раствора аммиака [1—4]. Однако можно избежать большого избытка аммиака, если применить углекислый аммоний [5, 6], который, с одной стороны, уменьшает значение pH среды, в которой проводится аммонолиз, а с другой стороны—блокирует первичную аминогруппу благодаря образованию иона карбамата ЫНдСОО и таким образом затрудняет образование вторичных и третичных аминосоединений. Этот метод хорошо подходит для получения полумикроколичеств первичных аминов и а-аминокислот. Однако за небольшим исключением, если количество исходного вещества меньше 1 г, то получение чистого конечного продукта с хорошим выходом затруднительно. В таких случаях желаемый продукт целесообразно выделять и очищать в виде соответствующего производного. Нижеследующие разделы посвящены краткому изложению наиболее важных методов аминирования и применению их к микроколичествам веществ. [c.274]


    Представляет интерес образование нитробензола при обработке бензола двуокисью азота и хлором в присутствии железа (т. е. в условиях каталитического хлорирования бензола). Течение реакции здесь остается неразъясненным 2. В одном патенте приведен имеющий некоторую аналогию с этим способом метод одновременного введения хлора и нитрогруппы в высококон-денсированные циклические системы, характерные для кубовых красителей (ди-бензантрон, пи,рантрон и т. п.). Для этого предложена обработка исходных ве -ществ хлором в среде нитро- (соответственно нитрозо-)соединений при нагревании. В патенте утверждается, что нитрогруппа переходит из одного соединения в другое [c.170]

    Получение ароматических нитрозосоединений осложнено рядом обстоятельств. Если для введения галогенов, сульфо- или нитрогрупп в ароматическую систему реакция электрофильного замещейия является наиболее важной, то для синтеза ароматических нитрозосоединений из-за ряда ограничений она имеет значительно меньшее значение. К числу наиболее серьезных ограничений реакции нитрозирования относится низкая электрофильность нитрозирующих агентов. Так, наиболее силь ный из нитрозирующих агентов нитрозоний-катион в 10 раз слабее катиона нитрону [1, 1972]. Поэтому в реакцию нитрозирования вступают арены, содержащие ОН- или ЫКК -группы. Другое ограничение, сужающее возможности методов синтеза, заключается в повышенной склонности ароматических С-нитрозосоединений вступать в различные реакции в кислых и щелочных средах, что мешает вводить новые группы в арбма-тическое кольцо нитрозоарена. В связи с этим поиск новых путей синтеза ароматических нитрозосоединений остается актуальным. [c.4]

    Работы Вроблевского остаются одним из лучших примеров методов и логики определения структуры органического соединения. Он приготовил пять теоретически возможных монобромбензойных кислот, чтобы выяснить различия между ними. Исходным веществом для синтезов слуншл п-толуидин, метильная группа которого в дальнейшем определяла положение карбоксильной группы. Метод Вроблевского заключался во введении брома непосредственно или через нитрогруппу, а затем в использовании брома, нитрогрун-ны (или продукта превращения последней, нанример аминогруппы) или иода с целью блокирования одного или нескольких положений одновременно Б другое место молекулы вводили бром или заместитель, который можно заместить бромом, после чего все блокирующие группы заменялись на водород. Таким образом было блокировано сначала одно положение, затем первое и второе, далее первые два и третье и, наконец, первые три и четвертое. Из пяти конечных продуктов две пары оказались идентичными. Ладенбург до этого показал, что наличие двух нар эквивалентных положений для второго заместителя может служить строгим доказательством эквивалентности всех шести положений для первого заместителя. Так, три оксибензойные кислоты дают один и тот же фенол при декарбоксилировании и бензойную кислоту при восстановлении, а фенол можно превратить через бромбензол в бензойную кислоту. Таким образом было показано, что для первого заместителя четыре положения эквивалентны. Далее было известно, что две из оксибензойных кислот характеризуются тем, что каждая содержит гидроксил в одном из двух эквивалентных положений. Эквивалентность для второго заместителя должна сохраниться, когда первый замещается на водород, [c.156]


Смотреть страницы где упоминается термин Другие методы введения нитрогруппы: [c.967]    [c.171]    [c.385]    [c.598]    [c.598]   
Смотреть главы в:

Химия и технология бризантных взрывчатых веществ -> Другие методы введения нитрогруппы




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Методы введения

Нитрогруппа



© 2025 chem21.info Реклама на сайте