Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование ограничения реакции

    Первоначально алкилирование углей проводили под действием алкилхлоридов в качестве алкилирующих агентов и хлористого алюминия как катализатора. Навеску 10 г среднелетучего угля (24,6% летучих) тонко измельчали и суспендировали в 50 мл сероуглерода, а затем в суспензию добавляли 10 г порошкообразного хлористого алюминия. Полученную смесь при 45 °С обрабатывали 0,25 моль алкилхлорида. Используемые алкилхлориды содержали от 3 до 18 атомов углерода. Обычная продолжительность алкилирования составляла 3 ч, но в случае алкилхлоридов ie и i8 для завершения реакции требовалось 24 ч. Во всех опытах происходило присоединение алкильных групп к ароматическим молекулам угля, о чем можно было судить по увеличению массы образца. По приращению массы находили число присоединенных алкильных групп в расчете на 100 С-атомов угля (рис. 1). Оно составило 2—3 алкильные группы на 100 С-атомов. Исключение составлял пропилхлорид, в случае которого на 100 атомов углерода приходилось 7 пропильных групп. Видимо, это связано со способностью небольшой пропильной группы присоединяться в различные положения ароматических составляющих угля. С увеличением размера алкильных групп возможности замещения становятся более ограниченными, и это снижает степень алкилирования. Описанный процесс давал лишь незначительное повышение растворимости угля. Так, необработанный образец растворяется в пиридине на 27,2%, а в хлороформе на 47о алкилирование увеличивает растворимость в пиридине до 35%, а в хлороформе до 16%. При холостом опыте было показано, что повышение растворимости угля связано не только с действием хлористого алюминия. [c.302]


    Плеш [97] и Овербергер и др. [63,98] предположили, что ограничения цепи происходят в результате алкилирования по реакции Фриделя — Крафтса  [c.252]

    В табл. 16 приведены также величины Кр и Xip для реакций алкилирования при 300, 500 и 600 К, поскольку эти реакции проводят при невысоких температурах. До 500 К алкилирование может протекать практически с полным израсходованием реагента, но при 600 К термодинамические ограничения снижают возможную конверсию до 73—98%. В настоящее время ведется активный поиск гетерогенных катализаторов алкилирования, проявляющих активность при сравнительно высоких температурах. Поэтому целесообразно использовать невысокие концентрации олефина в исходной смеси. [c.130]

    Из приведенных в табл. 58 данных следует, что алкилирование протекает с выделением приблизительно 75—100 кДж на 1 моль алкилата, чему благоприятствуют низкие температуры. Очевидно также (Кы = Крр), что конверсии возрастают при увеличении давления. Теплоты реакций слабо зависят от температуры. При 300 К, а для многих реакций и при 400 К, алкилирование протекает практически нацело при атмосферном и повышенных давлениях. При более высоких температурах термодинамические ограничения становятся заметными, так что при -800 К превращение реагентов, как правило, не будет превышать 2%, а в ряде случаев — долей процента. [c.237]

    На первый взгляд создается впечатление, что и другие углеводороды, содержащие водород, связанный с третичным атомом углерода, вступают в реакции алкилирования. Однако изучение продуктов реакции алкилирования (табл.З), каждый из которых содержит по крайней мере один атом водорода, связанный с третичным атомом углерода, показывает, что на процесс алкилирования накладывается ряд ограничений. Опре- [c.144]

    В лабораторных условиях реакции алкилирования имеют ограниченное применение. Это объясняется следующими причинами. [c.386]

    Третье ограничение, препятствующее применению реакции алкилирования но [c.1097]

    Возможность осуществления реакций электрофильного алкилирования, имеющих большое значение как магистральный путь от базовых соединений ароматического ряда к разнообразным практически важным веществам и материалам, принципиально ограничена аренами, не содержащими электроноакцепторных заместителей. Перспективным подходом к преодолению этого ограничения и, тем самым, к расширению сферы использования реакций рассматриваемого типа, является восстановительная ак- [c.293]

    На рис.2.9 приведена температурная зависимость изменения констант скорости убыли толуола, представленных в табл.2.17. Левая ветвь кривой (область температур выше 298 К) характерна для типичной реакции алкилирования арена мономером (Е = 26 кДж/моль). Излом при переходе в более низкотемпературную область (значение Е близко к нулю) указывает на преобладающую роль процесса полимеризации изобутилена. Диссоциация ионных пар при понижении температуры повышает активность ионов карбония как в отношении реакции роста цепи, так и в отношении ограничения ее при использовании толуола. При этом значение EдJ = -25,1 кДж/моль (энергия активации изменения степени полимеризации изобутилена) в присутствии толуола близко к Ед процесса, протекающего в отсутствие арена, т.е. в области отрицательных температур имеет место полимеризация изобутилена с ограничением цепи толуолом или своеобразная реакция алкилирования по Фриделю - Крафтсу. [c.103]


    Более высокой электрофильной активностью растущего карбкатиона полиизобутилена относительно карбкатиона полистирола в реакции со своим мономером (значения кр отличаются на 2-3 порядка [62]) можно объяснить и различия в значениях к /кр для изобутилена [241] и стирола [243] (см.табл.2.18). Предполагая, что значения кр для данного мономера не зависят от природы метилбензола, на основании значений относительных констант передачи цепи на метил бензол к /крИ на мономер к /кр были рассчитаны отношения констант к /кр, характеризующие конкурентную способность изученных оснований в реакции с полимерным карбкатионом. В отличие от растущего полистирола, проявляющего селективность в реакции сопряженного алкилирования метилбензолов (высокие значения к /к ), более активный карбкатион полиизобутилена менее избирателен (значения к /к близки к 1), поэтому полностью предотвратить реакцию передачи растущей цепи на изобутилен по реакции А невозможно. Полиизобутилен, синтезированный в присутствии метилбензолов, содержит, наряду с ароматическими фрагментами, двойные связи, при этом содержание двойных связей в образцах, полученных при различных конверсиях изобутилена (от 25 до 70%), практически неизменно в ходе реакции и составляет 0,2 моль С=С на 1 моль ПИБ. Это подтверждает конкурентный характер реакций ограничения растущей цепи изобутиленом и метилбензолами (реакции А и Б, В схемы 2.9 соответственно). [c.105]

    Уменьшение молекулярной массы полиизобутилена и количества связанного фенола с повышением температуры полимеризации отражает неблагоприятное влияние смещения равновесия ионы ионные пары вправо как на стадии роста, так и на стадии сопряженной с ней реакции алкилирования фенола - ограничения цепи. Содержание фракции полиизобутилена с концевыми фенольными группами мало зависит от молекулярной массы полимера для фракционированных образцов [245], что также согласуется с сосуществованием реакций роста и обрыва цепи в результате сопряженного алкилирования. [c.107]

    Ограничения для реакции алкилирования по Фриделю—Крафтсу [c.366]

    Алкилирование по Фриделю — Крафтсу имеет в лаборатории ограниченное применение из-за того, что в результате реакции часто образуется смесь продуктов. Это вызвано несколькими причинами  [c.120]

    Имея в виду изложенное выше ограничение, можно рассмотреть случай, когда второй заместитель является электроположительным или электроотрицательным. Небольшое число примеров первой группы может быть найдено в литературе. Так как сам фурановый цикл легко разрушается, то фурановый цикл с электроположительным заместителем еще более неустойчив. Введение второго положительного заместителя будет еще больше понижать устойчивость фуранового цикла, в особенности в кислой среде, обычно применяемой для введения таких заместителей (например, реакции алкилирования и галогенирования). Возможным исключением является бромирование фурана в четыреххлористом углероде (стр. 115). [c.116]

    Одно из ограничений реакций при высоком давлении состоит в том, что в применяемых жестких условиях алкилированные ароматические соединения изомеризуются или диспропорционируются так, п-ксилол дает 2,4-диметилбензальдегид. Как правило, для простых моноалкилбензолов наблюдается почти исключительно пара-замещение. [c.705]

    Реакция алкилгалогенидов с ацетиленид-ионами весьма полезна, но находит ограниченное применение [1258]. Хорошие выходы получаются только при использовании первичных алкилгалогенидов, не разветвленных в р-положении, хотя в присутствии ul можно использовать и аллилгалогениды [1259]. При использовании в качестве реагента самого ацетилена можно успешно ввести две различные группы. В качестве субстратов иногда применяют также сульфаты, сульфонаты и эпоксиды [1260]. Ацетиленид-ион часто получают обработкой алкина сильным основанием, таким, как амид натрия. Ацетилениды магния (реактивы Гриньяра этинильного типа, получаемые по реакции 12-19) также часто применяются, хотя они взаимодействуют только с активными субстратами, такими, как аллил-, бензил- и пропаргилгалогепиды, но не с первичными алкилгалогенидами. Другой удобный метод получения ацетиленид-иона заключается в прибавлении алкина к раствору СНзЗОСНг" в диметилсульфоксиде [1261]. Такой раствор можно приготовить, добавляя гидрид натрия в диметилсульфоксид. В другом методе алкилгалогенид обрабатывают комплексом ацетиленида лития с этилендиамином [1262]. Третичные алкилгалогениды вступают в реакцию сочетания при взаимодействии с алкинил-аланами (R = )sAl [1263]. При использовании 2 молей очень сильного основания можно провести алкилирование по атому углерода в а-положении по отношению к концевой тройной [c.222]

    Еще раз следует подчеркнуть, что важной особенностью предлагаемого механизма является стабилизация предшественника карбена, динамически связанного в форме тригалометилидного аниона на границе раздела фаз. Кинетика таких реакций и реакций алкилирования слабых кислот не исследована. Их изучение осложняется гетерогенностью системы, конкурентными реакциями, сложными равновесиями, а также общими ограничениями, связанными с получением линейных зависимостей для констант скоростей второго порядка (см. [10]). Однако, несмотря на все эти трудности, известные факты, по-вцдимому, согласуются с рассмотренным выше механизмом. [c.63]


    Термодинамическим расчетом было показано, что при повышении мольного отношения бензола к пропилену с 1 1 до 6 1 снижается равновесное содержание гексиленов и нониленов в смеси. При алкилировании бензола пропиленом в промышленных условиях при повышенном соотношении бензола к пропилену также достигается малый выход димеров и тримеров пропилена в смеси. Следовательно, термодинамические ограничения на протекание реакции в зависимости от избранных условий оказывают помощь в повышении селективности процесса. [c.12]

    В последнее время в связи с созданием установок алкилирования большой единичной мощности наметилась тенденция к осуществлению реакции при повышенной температуре и уменьшенном времени контакта. Поскольку увеличению скорости процесса в целом могут препятствовать диффузионные ограничения (в частности, лимитирующей стадиен становится растворение олефинов в бензоле), то его переводят полностью в жидкую фазу, и реакции алкилирования и трансал-к илирования могут быть завершены за 2 мин. [c.102]

    В качестве катализаторов заманчиво использовать макросет-чатые ионообменные смолы, обладающие жесткой и пористой структурой. При низких температурах они проявляют высокую активность в ряде реакций, катализируемых кислотами, хотя не активны в процессе алкилирования изопарафинов олефинами, поскольку на них не протекает гидридный перенос. Кислотность этих соединений, однако, можно увеличить за счет образования комплексов с какой-нибудь кислотой Льюиса. Такой подход использован в работе [8], где было найдено, что алкилирование изопарафинов олефинами катализируется гелями ионообменных смол, содержащих трифторид бора. Эффективность этих каталитических систем, однако, недостаточна, так как гели не способны набухать в углеводородах. Эти ограничения отсутствуют в случае макро-сетчатых ионообменных смол. [c.73]

    Чаще всего эту реакцию проводят с пероксидами, в которых Я = арил, так что конечный результат тот же самый, что и в реакции 14-16, хотя реагенты разные [276]. Реакция имеет ту же область применения, что и реакция 14-16, но используется реже. При К = алкил применимость реакции ограниченна [277]. Этим методом можно алкилировать только некоторые ароматические соединения, в частности бензольные циклы с двумя или несколькими нитрогруппами и конденсированные циклические системы. 1,4-Хиноны подвергаются алкилированию под действием диацилпероксндов или тетраацетата свинца (в этих случаях наблюдается метилирование). [c.99]

    Некоторым ограничением применения алкилирования по Фриделю—Крафтсу является то, что вводимая группа, обладая электронодо-норным характером, активирует кольцо в отношении дальнейшего замещения. Неизбежно образуются полизамещенные соединения, что приводит к снижению выхода и загрязнению нужных продуктов реакции, вследствие чего требуется их тщательно очищать. [c.167]

    Обсуждение алкилирования олефинами ие будет полным, если не упомянуть о катализаторах Циглера — Натта, используемых для полимеризации олефинов [60]. Алкильные производные алюминия (AlRa) при нагревании превращают непредельные углеводороды в полимеры со сравнительно короткими цепями, тогда как комбинация алкильных производных алюминия и хлорида титана образует другую каталитическую систему, которая позволяет полимери-зовать олефины при низком давлении в изотактические полимеры очень высокого молекулярного веса. Эти факты указывают на то, что в активный катализатор входят как атом титана, так и атом алюминия и их наличие контролирует образование цепи [611. Вероятно, связь Ti—С2Н5 ослаблена и происходит алкилирование одного из лигандов. Эта реакция имеет ограниченное применение для син- [c.55]

    S ранних работах [2, 3] алкилирование ацетилидов щелочных -металлов проводилось в жидком аммиаке при действии органических галогенидов или сульфатов в качестве алкилирующих агентов. Среди галогенидов бромиды дают наилучшие результаты, однако эта реакция имеет ограничения ввести можно только первичные алкильные группы, не имеющие разветвления у второго атома углерода. Кроме того, при применении алкилгалогенидов этот метод не дает удовлетворительных результатов при синтезе метил- или этил-ацетиленов, а в случае высших алкилгалогенидов необходимо работать под давлением. Если исходить из бромидов от w-пропил-до н-гексилбромида, то выходы колеблются от 40 до 80%. При использовании диметил- или диэтилсульфата в качестве алкилн-рующего агента происходит замещение лишь одной алкильной группы и конверсия достигает от 50 до 100%. Другие сложные эфиры, такие, как метан- и я-толуолсульфонаты, а также, ацетилиды лития и калия тоже использовались, но в ограниченной степени. [c.188]

    Алкилирование производных малоновой кислоты. При использовании системы жидкость — жидкость для реакции алкилирования эфиров малоновой кислоты существуют те же ограничения, что и для ацетоуксусного эфира (см. выше). Для предотвращения гидролиза по эфирной группе рекомендуется вводить в реакцию грет-бутиловый эфир малоновой кислоты, а в случае применения малоактивных алкилирующих агентов, например -бутилбромида, добавлять к реакционной смеси ДМСО [277]. При использовании избытка алкилирующего средства образуются диалкилпроизводные. [c.109]

    Другими основаниями, имевшими лишь ограниченное применение при ялкилиронании, япляются гидроокись бензилтриэтил-аммония [84], уксуснокислый калий [85], аммиак [86, 87], углекислый кялий [88, 89], фенилнятрин [90] и различные еноляты натрия [91—93]. Алкилирование проводилось также в присутствии металлического цинка [94] и неорганических солей серебра [95, 96]. В некоторых реакциях алкилирования выходы удавалось повысить нри прибавлении к реакционной смеси меди или ее солей [97—100]. [c.136]

    Низкая нуклеофильиость моноанионов барбитуровой кислоты 1 и ее производных, объясняющаяся их высокой кислотностью и соответственно, слабой основностью сопряженных оснований, является одной из важнейших особенностей этих соединений, отличающих их от других (3-дикетонов. Вероятно, поэтому реакции алкилирования барбитуровых кислот, протекающие по механизму SN2, имеют весьма ограниченное применение [1]. С другой стороны, химия этих соединений изобилует примерами SNl реакций и других процессов, протекающих через высокополярные и ионные промежуточные состояния. Так, кислота 1 и ее N-зaмeщeнныe производные исключительно легко метилируются диазометаном с образованием 6-метоксиурацилов 27, 32 [25-27]. [c.318]

    На скорость образования продуктов алкилирования заметно влияет природа сульфокислотного Кт (табл. 1). Видно, что в гранулах гельполимерного СФК (КУ-2) все реакции (особенно реакции ди-алкилирования Ф) идут медленнее, чем при катализе БСК (в реакторе смешения), и с меньшей Еа. Это обусловлено диффузионным ограничением подвижности реагирующих молекул внутри полимерного вещества ионитного Кт по сравнению с гомогенным раствором. [c.8]

    Мы рассмотрели два ограничения при алкилировании по Фриделю — Крафтсу возможность перегруппировки алкильной группы и тот факт, что арилгалогениды нельзя использовать вместо алкилгалогенидов. В разд. 12.14 будет рассмотрено влияние температуры на ориентацию при пол.уче-нии полиалкилбензолов. Кроме того, существует ряд ограничений, возникающих вследствие влияния групп, уже имеющихся в ароматическом кольце. Дезактивация может быть настолько сильной, что реакция вообще не будет протекать, а активирование может быть настолько сильным, что потребуются специальные методы для контроля за реакцией. [c.366]

    Присоединение литийорганических соединений к аренам, как было показано, сопровождается дальнейшим элиминированием гидрида лития и приводит к полному алкилированию. Тем не менее подобные реакции также имеют ограниченную препаративную ценность. С другой стороны, присоединение к координированным аренам является многообещающим в качестве непрямого метода полного ароматического нуклеофильного замещения с формальным замещением гидрида [2]. В приведенном ниже примере [3] нуклеофилом является литиирован-ное производное циангидрина, а реакция в целом эквивалентна нуклеофильному ацилированию ароматического кольца. Возможны различные варианты такого типа реакций, например, следующий [4]  [c.57]

    Соединения других металлов имеют в этой реакции более ограниченное применение для получения трифснилэтинилгермана использовали ацетилеиид натрия (схема 17) [31]. Применение алюминийалкилов для алкилирования тетрахлорида германия может привести к низким выходам продуктов вследствие образования комплексов между соединениями алюминия и тетрахлоридом германия. Для получения максимальных выходов реакцию не следует проводить в эфирных растворах добавление хлорида натрия может ускорить реакцию [32]. [c.162]

    В лаборатории алкилирование по Фриделю — Крафтсу имеет ограниченное значение. Так, при алкилировании бензола получается смесь MOHO-, ди- и полизамещенных углеводородов. Это объясняется тем, что скорость реакции алкилирования самого бензола меньше, чем скорость реакции алкилирования образующегося на первой стадии алкилбензола. Под влиянием хлористого алюминия может происходить не только замещение алкильным радикалом водорода ароматического ядра, но и дегидрирование, гидрирование, изомеризация и полимеризация продуктов. Течение реакции алкилирования бензола частично мол<но регулировать путем подбора соответствующих количеств реагентов. Если хотят получить моноалкилзамещенный продукт бензола, то берут большой избыток последнего, а для получения полиалкилзамещенных производных бензола применяют избыток алкилирующего агента. Однако нельзя полностью избел<ать образования продуктов разной степени замещения, что снил<ает выход и представляет определенные трудности при выделении основного продукта. [c.171]


Смотреть страницы где упоминается термин Алкилирование ограничения реакции: [c.79]    [c.453]    [c.398]    [c.79]    [c.453]    [c.316]    [c.41]    [c.351]    [c.489]    [c.301]    [c.48]    [c.113]    [c.266]    [c.121]    [c.632]    [c.509]   
Органические реакции Сб.3 (1951) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции алкилирования Алкилирование

Реакция алкилирования



© 2025 chem21.info Реклама на сайте