Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды, ароматические получение электролизом

    В истории органической химии началась эпоха поисков общих теоретических основ науки, борьба и частая смена взглядов, характерных своей односторонностью. За короткое время были предложены теория замещения, механическая теория типов, теория ядер и др. Различные системы взглядов часто носили взаимоисключающий характер, редко дополняли друг друга. Быстро развивались экспериментальные исследования. Ко времени создания и принятия так называемой унитарной системы органической химии были разработаны методы получения целых классов органических соединений. Митчерлих [31] предложил нитрование ароматических соединений, Н. Н. Зинин открыл знаменитый способ получения аминов путем восстановления нитросоединений, А. А. Воскресенский открыл хинон и положил основу исследования совершенно нового класса веществ — хинонов, Кольбе для получения углеводородов предложил электролиз кислот, а для получения кислот — омыление нитрилов, способ получения которых был разработан Дюма, и. т. д. Появилась острая необходимость обобщения всего фактического материала. В этой обстановке возникает, [c.20]


    Декарбоксилирование карбоксилат-ионов в процессе электролиза с последующей рекомбинацией образующихся радикалов носит название реакции Кольбе [356]. Реакция используется для получения симметричных углеводородов R—R. Алкильные группы могут иметь прямую или разветвленную цепь, однако разветвление в а-положении к карбоксильной группе затрудняет реакцию. К ароматическим соединениям реакция неприменима. В реакцию вступают функционально замещенные субстраты, но некоторые функциональные группы препятствуют реакции [356]. Введение в реакцию смеси солей двух разных кислот позволяет получать несимметричные димеры R—R.  [c.111]

    Из сказанного следует, что окисление некоторых ароматических углеводородов включает одноэлектронные стадии, приводящие к дикатионам. В этой связи интересны результаты, полученные Сио-дой [16] для 9,10-дифенилантрацена. Известно, что это соединение дает катион-радикал при обратимом одноэлектронном окислении, а при более положительных потенциалах отдает второй электрон, образуя дикатион. При электролизе в ацетонитриле и последующей реакции первичного продукта с водой образуется гранс-9,10-ди-окси-9,10-дифенилантрацен (VI), независимо от того, соответствовал ли потенциал одно- или двухэлектронной реакции. На основании изучения кинетики реакции катион-радикала (VII) с водой была предложена следующая схема реакции  [c.126]

    Некоторое количество исследований, выполненных за последние несколько лет, было посвящено электрохимическому алкили-рованию [254, 264—273]. Выше уже отмечалось, что ароматические углеводороды метилируются при электролизе с графитовым анодом [254]. Выходы метилированных углеводородов в отдельных случаях достигают 90%. Так, из бензальдегида может быть получен ацетофенон [264]  [c.35]

    Водород является удобным энергоносителем, что послужило основой создания атомно-водородной энергетики. Избыточная энергия, вырабатываемая атомной электростанцией, может быть запасена в виде водорода, получаемого, например, электролизом воды. Хранение водорода в больших масштабах в виде газа неудобно, поэтому разрабатываются методы хранения и транспортировки водорода в компактном виде. В перспективе предусматривается получение металлического твердого водорода при сверхвысоких давлениях. Уже сейчас для хранения и транспортировки водорода в скрытой форме используются твердые и жидкие гидриды. Особый интерес представляют процессы гидрирования ароматических углеводородов. Так, при гидрировании бензола водород связывается с образованием циклогексана  [c.100]


    Кроме того для синтеза полинитроалканов могут быть использованы нитрование углеводородов, присоединение двуокиси азота к алкеиам, электролиз солей нитроалканов, деструктивное нитрование ацетиленовых или ароматических соединений (синтез тетра-иитрометана, нитроформа) и ряд других реакций, имеющих более частный характер. Так, например, гексанитроэтан был получен по следующей схеме  [c.19]

    Введение галоида в ароматические углеводороды вместо водорода сделалось известным как метод лабораторный в конце 40- и начале 50-х годов прошлого столетия. Позднее метод хлорирования стал заводским процессом, сначала в применении к толуолу для получения продуктов охлорения СНз-группы и через них — беизальдегида (80-е годы). Значительно позднее техника заинтересовалась получением хлоропродуктов с замещением галоидом водородных атомов ароматического ядра (главным образом хлорбензола). Этот период соответствовал упрочению производства щелочей электролизом хлористых солей, когда хлор стал отходом производства. Хлорирование ароматических соединений в ядре вошло в практику в самом конце XIX столетия л начале XX. [c.98]

    Природа продуктов электрохимического фторирования ароматических углеводородов в жестких условиях отличается от природы продуктов, полученных при мягком фторировании. При фторировании бензола в безводной фтористоводородной кислоте, содержащей фторид натрия, основным продуктом электролиза является перфторциклогексан [10]. [c.341]

    Состав и природа соединений галоидных солей алюминия с ароматическими углеводородами неоднократно привлекали внимание также и других исследователей. Так, В. А. Плотников [10] в 1908 г. изучал электропроводность и электролиз нижнего слоя, полученного при взаимодействии [c.229]

    Другим типом комплексных электролитов являются растворы галогенидов алюминия и алюмоорганических соединений в ароматических углеводородах. Например, к 100 см 10 %-го раствора алюминийтриэтилэфирата в ксилоле добавляют в токе азота 80 г порошка AI I3, смесь кипятят и отделяют слой тяжелой темно-коричневой жидкости, которую подвергают электролизу. При плотности тока 120—130 А/м на медном катоде осаждают блестящие, плотно сцепленные осадки алюминия. Катодный выход по току 65 %. Аналогичным способом может быть получен электролит из хлорида алюминия, трифенилалюминия и ксилола. [c.110]

    Углеводородами называются соединения, состоящие из углерода и водорода. Различают алифатические предельные и непредельные углеводороды, циклические (нафтены) н ароматические. Наиболее важным источником получения предельных углеводородов состава С Н2 -2 является нефть. При перегонке последней отбирают фракцию т. кип. 150—170° —бензин, нз которой дробной перегонкой получают легкий бензин уд. в. 0,64 -0,66, т. кип. 40 -75°, известный под названием петролейный эфир. Выше кипящая фракция —средний бензин, т. кип. 70—120 , уд. в. 0,70—носит название авиационного бензина, его применяют для приготовления йод-бензнна (раствора йода в бензине, используемого иногда для дезинфекции) и особенно широко в технике для двигателей с зажиганием и в качестве растворителя. Фракцию г. кип. 150 —300° — керосин используют в качестве горючего также для двигателей внутреннего сгорания и иногда в быту, а также для освещения. Фракции, перегоняющиеся без разложения при температурах Кипения, более высоких, чем керосин, называют соляровыми маслами их используют в качестве дизельного топлива, смазочных масел или путем Крекирования превращают в более легкие углеводороды. Перегонкой с водяным паром фракций, кипящих выше 300", получаюг вазелин, который представляет собой густую смесь жидких и твердых углеводородов. Из нефти выделяют, кроме того, смесь твердых углеводородов, называемую парафином, Предельные углеводороды получают и синтетическим путем восстановлением галогенопроизводных, спиртов, альдегидов, кетонов, непредельных соединений, декарбоисилированием кислот, электролизом солеи жирных кислот н др. [c.105]

    На возможность получения ароматических б,г омн1)Спкнных углеводородов путем электролиза продуктов присоедикенг. я бромистого алюминия, получающихся при п р о п у с к а н и п б р о м и с т о г о в о-дорода в углеводороды в присутствии б р о к с т о i о а л ю w и-н и я, мы здесь только указываем . [c.394]

    Для окисления I моль 9,10-дифенилантрацена и рубрена при потенциале несколько большем потенциала предельного тока пер- вой волны требуется 1 фарадей электричества полученные растворы и после электролиза дают спектры ЭПР. Пики на катодных вольтамперограммах этих растворов наблюдаются при тех же потенциалах, что и пики на катодной части циклических вольтамперограмм исходных растворов. Пивер и Уайт [13] исследовали 9,10-ди-фенилантрацен и шесть других полиядерных ароматических углеводородов методом циклической вольтамперометрии на вращающемся электроде с обычной медленной разверткой. Была также [c.123]


    С другой стороны, существование таких корреляций позволяет с помощью простого метода приближенно определить теоретические параметры. Полярографические потенциалы полуволн определить, конечно, легче, чем потенциалы ионизации или сродство к электрону. Полярографические данные служат также для проверки теоретических моделей, особенно теории МОХ. Мы уже видели, что потенциалы полуволн сопряженных кислот ароматических углеводородов плохо коррелируют с данными простого метода МОХ, однако корреляция с данными метода ССП значительно лучше [124]. Так, необычное полярографическое поведение циклооктатетраена является отражением относительной нестабильности радикал-аниона и стабильности дианиона [112, 115]. Эти данные позволяют предположить, что при анодном электролизе циклооктатетраена в растворителе, не обладающем нуклеофильностью, должен получаться стабильный дикатион. Мы также уже говорили об использовании полярографии и ЭКП для получения стабильных радикал-анионов, которые были исследованы с помощью ЭПР и спектроскопии. Такие данные позволяют проверить некоторые теоретические величины. [c.193]


Смотреть страницы где упоминается термин Углеводороды, ароматические получение электролизом: [c.153]    [c.391]    [c.52]    [c.417]    [c.73]   
Успехи органической химии Том 1 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды, получение ароматические Ароматические

получение электролизом



© 2025 chem21.info Реклама на сайте