Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация протона и характеристика иона

    Структура и устойчивость ионных пар и агрегатов простых ионов более высокого порядка рассматриваются как функция структурных характеристик ионов и растворителя. Далее предметом рассмотрения становятся более сложные ионные образования типа мицелл и полиионов. Особенно много внимания уделяется природе взаимодействий при ассоциации ионов и их сольватации, рассматривается и динамика образования ионных агрегатов. То, как факторы, перечисленные выше, влияют на реакционную способность, демонстрируют различные примеры реакции переноса протона и электрона, реакции нуклеофилов, химия карбанионов и ионных пар карбониевых ионов. [c.498]


    II. СОЛЬВАТАЦИЯ ПРОТОНА И ХАРАКТЕРИСТИКА ИОНА Н3О+ [c.56]

    Растворимость, константы диссоциации и другие свойства электролитов рассчитываются по разности между очень большими и близкими величинами энергий кристаллической решетки или сродства протона в вакууме и химической энергии сольватации ионов, поэтому ошибки в определении этих величин сильно сказываются на конечных результатах. Так, ошибка в 1% при определении химической энергии сольватации приводит к различию па один порядок в величине констант диссоциации. В связи с этим данные о величинах химической энергии сольватации могут быть использованы только для решения вопроса о направлении процесса, например для решения вопроса о том, в каком направлении влияет растворитель на растворимость электролитов, но они мало пригодны для численной характеристики влияния растворителей на свойства электролитов, на их растворимость, силу и т. д. [c.184]

    Для характеристики химических реакций в неводных растворах, как правило, применяют как классификацию Бренстеда, так и Льюиса. По специфическому взаимодействию растворителя с анионами и катионами Д. Паркер [12] предлагает делить растворители на диполярные апротонные и протонные. Протонные растворители способны образовывать водородные связи с ионами растворенного вещества, в го время как диполярные апротонные растворители таких связей не образуют. Поэтому процессы сольватации ионов в таких растворителях существенно отличаются. [c.6]

    В определении свойств жестких и мягких кислот и оснований роль растворителя гораздо важнее, чем это кажется на первый взгляд. Требует уточнения приведенное выше утверждение, что высокая НВМО принадлежит сильно электроположительному иону (Ь " ") на самом деле расчет изолированного иона показывает, что незаполненная 2 -орбиталь должна быть гораздо ниже по энергии, чем 2 -орбитали ббльших по размеру и предположительно более мягких ионов. Подобным образом ВЗМО небольших анионов (ОН , Р ) в газовой фазе расположены достаточно высоко, как и следовало ожидать, учитывая сильное отталкивание между электронами, сконцентрированными в малом объеме [34]. В результате эти ионы, взятые отдельно, имеют орбитальные характеристики, которые мы приписывали мягким системам Жесткость малым ионам придает только сольватация протонными растворителями [34]. Плотная положительная сольватная оболочка понижает ВЗМО малых анионов. Отрицательные про-тивоионы повышают энергию НВМО малых катионов. Малые ионы, кроме того, частично приобретают жесткость в начале кислотно-основной реакции при прямом взаимодействии с субстратом, кулоновское поле которого оказывает стабилизирующее влияние, подобное влиянию протонных растворителей. С другой стороны, в комплексах катиона с краун-эфирами или криптандами он имеет характер мягкой кислоты, и реакция контролируется граничными орбиталями благодаря низкой НВМО иона, который реагирует так, как будто он изолированный [35] и больший по размерам, чем на самом деле. [c.190]


    Иной тип деления термодинамических характеристик сольватации стехиометрической смеси ионов основан на использовании для этих целей зависимостей их разностей от различных свойств ионов. К ним относятся методы Латимера, Питцера и Сланского [36], Яцимирского [15], Фервея [251], Измайлова [222, 264], Холливела и Нибурга [265] и др. Наиболее строгим является расчет последних, получивших для изменения энтальпии при гидратации протона величину — 260,7 2,5 ккал/г-ион. [c.120]

    Характеристика элемента. Электронная конфигурация атома 15225. Появление нового энергетического уровня, на котором у атома лития всего один электрон, определяет весь характер и поведение элемента. У него самый большой во 2-м периоде атомный ради-Л с, что облегчает отрыв валентного электрона (/ = 5,4 эВ) и возникновение иона Ы+ со стабильной конфигурацией инертного газа (гелия). Следовательно, его соединения образуются с передачей электрона от лития к другому атому и возникновением ионной связи с небольшой долей ковалентности. Литий типичный металлический эле.мент. В виде вещества это щелочной металл. От других членов I группы он отличается малыми размерами и )аименьшей, по сравнению с ними, активностью. В этом отношении он напоминает расположенный по диагопалк от Li элемент П гр ппы - - таг ний. В растворах ион Ь1+ сильно сольватирован его окружают несколько десятков молекул воды. Литий по величине энергии сольватации — присоединения молекул растворителя, стоит ближе к протону, чем к катионам щелочных металлов. [c.203]

    Экспериментальные данные показывают, что значения Ка для алканолов лежат в области 10" —10" , т. е. фенол — значительно более кислый, чем любой алканол. Это означает, что в водном растворе фенолят-ион может существовать в значительно более высокой концентрации, чем алкоголят-ион иными словами, если сформулировать это более строго, в сравнимых физических условиях изменение энтальпии — энтропии нри ионизации фенола в большей степени благоприятствует образованию фенолят-иона, чем алкоголят-иона. Поскольку отсутствуют детальные данные относительно изменения энтропии при ионизации фенолов и алканолов, интерпретация наблюдаемого большого различия в величинах Ка дается на основании измерения энергетических характеристик, и для качественной оценки их необходимо сравнивать относительную легкость удаления протона от фенола и алканола и относительную устойчивость образующихся анионов по отношению к воде. Что касается первого из этих пунктов, являющегося менее существенным, то очевидно, что ионизация алканола протекает, как удаление протона от атома кислорода, который с самого начала являлся сильно электроотрицательным, а в конце процесса приобретает полный отрицательный заряд (если не учитывать неизбежного рассеяния заряда за счет сольватации). С другой стороны, ионизация фенола протекает, как отщепление протона от кислородного атома, который уже является электронодефицитным за счет -1-М-эффекта более того, этот атом кислорода связан с тригонально гибридизованным атомом углерода, электроотрицательность которого заметно выше электроотрицательности тетраэдрически гибридизованпого углерода. В соответствии с этим основание (вода) будет легче отрывать протон от фенольной ОН-группы, чем от ОН-группы алкано 1а, поскольку в первом случае атом водорода с самого начала будет нести больший частичный положительный заряд. Что же касается относительной устойчивости образующихся анионов по отношению к воде, то очевидно, что насыщенный углеводородный остаток не может обеспечить стабилизации алкоголят-иона за счет эффективного рассеяния избыточного заряда, в то время как ароматическое кольцо способно стабилизировать анион таким путем. На этом основании также можно ожидать, что фенол будет иметь большее значение величины Ка, чем алканол. [c.348]


Смотреть страницы где упоминается термин Сольватация протона и характеристика иона: [c.314]   
Смотреть главы в:

Современные аспекты электрохимии -> Сольватация протона и характеристика иона




ПОИСК





Смотрите так же термины и статьи:

Ионы сольватация,

Сольватация

Сольватация ионов



© 2025 chem21.info Реклама на сайте