Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поле кулоновское

    Адсорбция полярных молекул на поверхностях, имеющих электрические заряды. Прн адсорбции полярных молекул на адсорбенте, имеющем на поверхности ионы или диполи, возникает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферически расположенными диполями (например, молекулы воды и аммиака), они ориентируются в электростатическом поле адсорбента. Возникает так называемое ориентационное кулоновское взаимодейст- [c.495]


    Кулоновское поле — поле точечного заряда. Ядро и электрон можно считать точечными, так как их размеры в 10 раз меньше размеров атома. [c.24]

    Электростатические силы тем больше, чем выше заряд ионов и чем меньше ионные радиусы. Поле кулоновских сил имеет сферическую симметрию, что приводит к ненаправленно-сти ионной связи. Можно выделить три особенности строения ионных соединений. [c.347]

    Если применить эти результаты при изучении поведения электрического диполя в поле кулоновских сил, то из уравнений (229) и (236) можно получить [c.83]

    ВНЕШНЕЕ ПОЛЕ (КУЛОНОВСКАЯ ЗАДАЧА) [c.20]

    Эффект поля (кулоновский эффект) передача через пространство в соответствии с законами электростатики .  [c.56]

    При вращении электрона вокруг ядра атома в поле кулоновских сил он может иметь только дискретные орбиты, а не бесконечное число, предсказываемое классической механикой. [c.26]

    Третий важный вклад в расчет спектра бензола принадлежит Паризеру [1956 (а)]. Он включил в рассмотрение взаимодействие всех конфигураций, возникающих из основного состояния при одноэлектронных возбуждениях. Гамильтониан был построен таким же способом, как это рассмотрено в гл. 5 для теории самосогласованного поля кулоновские интегралы вычислены по методу Паризера — Парра (гл. 5). Результаты расчетов Паризера приведены в табл. 36. [c.182]

    Электрическое напряжение (символ U, единица - вольт, В) - физическая величина, численно равная работе, совершаемой полем кулоновских сил при перемещении одиночного положительного заряда на участке электрической цепи, на концах которой измеряют электрическое напряжение. Вольт В - 1 ZbK Кл. [c.512]

    При больших энергиях фотонов в кулоновском поле ядер образуются электронно-позитронные пары. Возникающей паре передается энергия фотона за вычетом энергии покоя пары, равной 2 = =1,022 МэВ. Указанное значение энергии является порогом для этого процесса. Сечение процесса образования пар медленно растет в области энергий от 1,02 до 4 МэВ, а затем возрастает в логарифмической зависимости от энергии. Нестабильность позитрона в среде приводит к его аннигиляции с испусканием в большинстве случаев двух фотонов с энергией 0,511 МэВ. Сечение образования пар пропорционально 2 + 2, где первый член отвечает ядерным процессам, а второй - процессам в поле электронов. [c.45]

    Поле, создаваемое атомным остовом, хотя и не кулоновское, имеет центральную симметрию, как и поле ядра в водородоподобном атоме, благодаря чему и здесь квантовые числа пи/ сохраняют свое значение. Однако в отличие от водородоподобного атома энергия электрона зависит не только от п, но и от /, вырождение относительно I снимается электрон движется в поле не одного ядра, но остова, и энергия электрона зависит от того, как он поляризует остов (нарушает его центральную симметрию) и как он проникает внутрь остова. Поляризация же и проникновение зависят от типа орбитали, т. е. от квантового числа /. Электроны в атоме можно разделить на квантовые слои. Квантовый слой, или уровень, — совокупность электронов с данным главным квантовым числом п. Внутри уровня электроны разделяются по энергии на подуровни 5, / и т. д. в соответствии с квантовым числом / (рис. 10). Наиболее проникающими  [c.35]


    Механизм взаимодействия капель в постоянном поле такой же, как и в переменном поле. Однако диполь-дипольное контактирование в электростатическом поле усиливается кулоновским взаимодействием частиц, сопровождаемым интенсивным встречным движением капель. В результате улучшается обработка и очистка светлых нефтепродуктов. [c.375]

    Однако содержание ионов в растворителях с малой диэлектрической проницаемостью очень мало по сравнению с содержанием полярных молекул из-за незначительной степени диссоциации растворов электролитов (10 —10 моль/л). Средние межионные расстояния при этом очень велики, и растворы в отношении ионов жидкости являются весьма разбавленными. Даже относительно сильное кулоновское поле, связанное с малым значением е среды, не вызывает существенных межионных взаимодействий. [c.27]

    Основной силой, действующей на частицу в электрофильтре, является кулоновская сила действия электрического поля на заряд частицы. Эта сила вне области короны направлена к осадительному электроду. Скорость в м/с перемещения частиц под действием этой силы (или скорость дрейфа частиц) в направлении, перпендикулярном осадительному электроду, рассчитывают по формулам  [c.21]

    Известно, что силовые лииии изолированного электрического заряда распространяются равномерно во все стороны пространства, образуя сферические эквипотенциальные поверхности напряженностей поля. Эти силовые линии одного и того же заряда не могут пересекаться. При кулоновском взаимодействии двух неподвижных противоположно заряженных частиц боковое давление силовых трубок, окружающих центральную силовую трубку (уравнения 10 и 11), обеспечивает параллельность распространения силовых линий и прямолинейность их траектории между протоном и электроном. Поэтому для определения напряженности поля такой центральной силовой трубки можно использовать уравнение напряженности поля между пластинами плоского конденсатора при сравнительно малом расстоянии между пластинами [12]  [c.22]

    Капли, попадая в электрическое поле, поляризуются, и их форма приближается к эллипсоидальной (рис. 1.1). Соударение и слияние капель происходит за счет кулоновского взаимодействия противоположных по знаку поляризационных зарядов частиц, оказавшихся вблизи друг от друга. Из электростатики известно, что заряд поляризации qn = Еа . Следовательно, сила взаимодействия, определяющая сближение и слияние капель [c.8]

    При адсорбции иона на поверхности диэлектрика, также состоящего из ионов, между ионами адсорбента и адсорбированным ионом должны возникать кулоновские силы. Положительный ион, адсорбированный на отрицательном ионе адсорбента, притягивается этим ионом, но отталкивается другими ионами адсорбента, расположенными в непосредственной близости вокруг адсорбирующего отрицательного иона затем он снова притягивается ионами последующего слоя и т. д. В результате всех этих взаимодействий адсорбированный нон испытывает довольно слабое притяжение. Электростатическое поле, создаваемое вблизи кубической грани поверхности кристалла галоидной соли щелочного металла, выражается следующим уравнением, которое было выведено Хюккелем [30]  [c.34]

    Кроме матричных элементов секулярной матрицы в дальнейшем потребуется среднее значение оператора энергии. Помимо среднего значения кулоновского взаимодействия электронов оно будет содержать еще два слагаемых - среднее значение оператора кинетической энергии электронов Т и среднее значение оператора их взаимодействия с ядром 0. Оба эти оператора представляют собой сумму одноэлектронных сферически симметричных операторов, поэтому вычисление их средних значений проводят так же, как и для среднего значения экранирующего поля. Для оператора О буквально, для оператора Т с небольшим пояснением, касающимся вычисления одноэлектронного матричного элемента  [c.164]

    Пространственная разделенность состояний в потенциале Хартри -Фока взаимно согласована с видом потенциала даже небольшое затравочное пространственное разделение электронных плотностей приводит к тому, что кулоновское поле ядра экранируется более полно для внешних оболочек, чем для внутренних, а это приводит к более полному разделению оболочек. [c.278]

    Пространственная разделенность электронных состояний, которая существует в случае потенциала Хартри - Фока, показьшает, что остовные и валентные электроны можно рассматривать как две подсистемы, взаимное влияние которых определяется главным образом не детальными, а некоторыми интегральными характеристиками подсистем. Это, вместе с приближением замороженного остова, позволяет сформулировать задачу расчета валентных состояний при заданных остовных как задачу о движении только валентных электронов, но в эффективном поле, отличающемся от поля Хартри — Фока. Такое эффективное поле должно быть в целом слабым по сравнению с полем Хартри - Фока, так как энергия основного состояния в эффективном поле определяет энергию валентных электронов, что на несколько порядков меньше энергии основного состояния (1х-состояния) в поле Хартри - Фока. Более того, так как орбитали валентных электронов сосредоточены в той области пространства, где потенциал Хартри — Фока мал (кулоновское поле ядра экранировано остовными электронами), то рассматриваемое эффективное поле может быть слабым не только в целом, но и в каждой точке пространства (заметим, что последнее условие не является необходимым). [c.278]


    Адсорбция полярных молекул на адсорбенте, имеющем ионы или диполи, вызывает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферийно расположенными диполями, как, например, у молекул воды или аммиака, то они ориентируются в электростатическом поле адсорбента. При этом возникает ориентационное кулоновское взаимодействие. [c.107]

    Наконец, если полярные молекулы адсорбируются на адсорбенте, имеющем на поверхности ионы или диполи, то возникает взаимодействие ионов или диполей адсорбтива с электростатическим полем адсорбента. При этом молекулы адсорбтива могут ориентироваться в электростатическом поле адсорбента, т. е. происходит ориентационное кулоновское взаимодействие. [c.87]

    Пусть г(3г(г) есть потенциал раствора на расстоянии г от центрального иона г, обладающего зарядом ге, где е — единица атомного заряда (4,80 X X 10 ЭЛ. ст.ед.), 2г—целое число. Предполагается, что г1 г(/-) обладает сферической симметрией. В таком случае о1 г(7-) можно разделить на две составляющие, из которых одна — поле кулоновского взаимодействия, образованное центральным ионом, и вторая — некоторая дополнительная величина 113а. ( ), обусловленная распределением ионов в растворе вокруг центрального иона г. Потенциалы фа.( ) и г з1(т ) должны удовлетворять уравнению Пуассона в любой точке г раствора, р=5(/-) —плотность заряда в точке г. Для сферически симметричного потенциала это выражение может быть записано в виде [c.447]

    Химические свойства молекул определяются валентными электронами, число которых, особенно в случае молекул, содержащих атомы тяжелых элементов, составляют лишь небольшую долю общего числа электронов системы. Поэтому желательно задачу расчета молекулы сформулировать так, чтобы в ней рассматривалась только система валентных электронов. Трудность состоит в том, чго надо учитывать не только поле (кулоновское и обменное), создаваемое электронами внутренних оболочек, но и требование ортогональности (в общем случае линейной независимости) орбиталей валентных и внутренних оболочек. Свести задачу расчета всей молекулы к задаче расчета системы валентных электронов можно с помощыо метода псевдопотенциала, который появился в 50-е годы в теории твердого тела и с тех пор бурно развивается . [c.272]

    Электрический ветер выравнивает концентрацию ионов и взвешенных частиц в поле электрофильтра и тем самым интенсифицирует процесс электроосаждения частиц. Как показали исследования, электрический ветер оказывает значительно большее влияние на мелкие частицы, чем на крупные. Так, частица радиусом 1 мкм в электрическом доле напряженностью 15-10 e M приобретает под действием электрического ветра скорость 0,2 м1сек, а скорость ее движения, вызванная силами электрического поля (кулоновскими силами), составляет 0,015 м1сек, тогда как частица радиусом 250 мкм в тех же условиях приобретает соответственно скорости 0,2 ж/сек и 1,36 ж/сек. [c.45]

    Вывод основного уравнения. Дискретные заряды ионов внутри ионной атмосферы Дебай и Хюккель заменили непрерывным полем ионной атмосферы и рассматривали взаимодействие иона с онной атмосферой как кулоновское. Средняя плотность заряда р в какой-то точке связана со средней величиной потенциала 1]) в этой точке уравнением Пуассона  [c.440]

    По мере того как реагирующие вещества приобретают свойства кулоновской среды, удовлетворяющей уравнению (29), возрастает, интенсивность действия вторичных полостей пониженного давления, что приводит к формированию поля деформаций, показанного на рис. 82. Главная его особенность состоит в том, что во всем объеме первичного блока (за исключением зоны опускания lJlEJ2B [) деформируемая среда перемещается от оси ОО1.К боковой границе первичного блока и одновременно поднимается к поверхности слоя. Это означает, что в центральной зоне первичного блока направление движения веществ изменяется на обратное и вместо условий консолидации блоков возникают условия распада больших первичных блоков на части Этот вывод подтверждает исчезновение застойной зоны под поверхностью О1В1, в области Пь Как было показано выше, рассчитанный по величине угла Ра размер этой зоны хорошо согласуется с опытными данными. В области Па вследствие менее интенсивного функционирования системы вторичных полостей пониженного давления инверсия потоков в центральной зоне первичного блока не возникает, что подтверждается устойчивостью его застойной зоны. [c.153]

    Высокая химическая активность карбкатионов и карб-аниопов связана прежде всего с кулоновским взаимодействием. Точечный заряд, сосредоточенный на одном атомо углерода, создает электростатическое поле, оказывающее весьма серьезное воздействие на все ближай- [c.70]

    За время Т электрон цожет распространять лишь фрагменты силовых линий и силовых трубок. Поэтому такие силовые трубки не могут своими двумя концами заканчиваться электроном и протоном. Лишь по истечении времени т = Ех , когда радиус орбиты атома водорода повернется на центральшш угол сектора а, все эти встречно распространяющиеся силовые трубки электрона и протона (рис. 1) образуют кривую, оба конца которой заканчиваются электроном и протоном. Согласно [7], электромагнитные волны могут сообщать ускорение электрону лишь в том случае, если они проходят через электрон. Такая возможность в секторе атома водорода реализуется лишь после поворота радиуса орбиты на центральный угол а. Видно, что именно в этот момент образуется центральная силовая трубка, соединяющая протон и электрон. Так как центральная силовая трубка складывается из фрагментов в одно и то же время, то взаимодействие между протоном и электроном и в атоме водорода, посредством центральной силовой трубки, осуществляется также "мгновенно". Следовательно, благодаря образованию центральной силовой трубки, силы инерции электрона, возникшие при ускорении свободного падения на протон при движении по круговой орбите, равны силе кулоновского притяжения электрона и протона, но направлены в противоположные стороны. Согласно [1], стоячая электромагнитная волна, полученная наложением параллельных отраженных волн на такую же падающую волну, не переносит никакой энергии электромагнитного поля, так как падающая и отраженная волны переносят одно и то же количество энергии, но в противоположных направлениях. Следовательно, и в случае движения электрона в атомах и молекулах, при условии параллельности силовы линий, исходящих от противоположных зарядов, в центральных силовых трубках создается электромагнитная "невесомость" на данных участках их поверхности. [c.27]

    В таких случаях надо выходить за рамки приближения самосогласованного поля, т.е. учитывать кулоновское отталкивание между электронами более детально. Об этом принято говорить кж об учете эффектов корреляции. В литературе термин электронные корреляции четко не определен, разные авторы вкладьшают в этот термин разный смысл. Уже в однодетерминаитном приближении движение электронов частично скоррелировано, так как связь (2.74) между РМП-2 и РМП-1 отличается от (2.72) для независимых частиц. Более определенным является термин энергия корреляции , под которым, как правило, понимают разность между точным (экспериментальным) значением энергии и значением (2.60), полученным в приближении Хартри - Фока. Оценки энергии корреляции показывают, что в тех слу-90 [c.90]

    Здесь (г) — потенциал внеишего поля Л и К — соответственно кулоновский и обменный операторы, определяемые выражениями (2.64) и (2.65) с плотностью [c.279]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    В среде с относительной диэлектрической проницаемостью е кулоновская энергия взаимодействия между зарядами д и q2 равна Л = —<71 г/4леео (во — диэлектрическая проницаемость вакуума в вакууме е= 1). Значение е показывает, во сколько раз уменьшается энергия притяжения зарядов в диэлектрике по сравнению с вакуумом. Уменьшение этой энергии увеличивает степень поляризуемости диэлектрика. (Напомним, что диэлектрики не содержат, подобно металлам и полупроводникам, свободно движущихся зарядов, в них может происходить лишь смещение зарядов под действием поля). [c.316]

    В разд. 5.3 говорилось о случайном вырождении в атоме водорода. Оно снимается в многоэлектронных атомах вследствие того, что поле, в котором движутся электроны, не является, строго говоря, чисто кулоновским. Поэтому схема энергетических уровней электронов для таких систем выглядит несколько иначе, чем в атоме водорода например, уровни 2з и 2р не совпадают, хотя, впрочем, разность энергий между 25- и 2р-уров-нйми, обусловленная эффективным полем ядра , значительно меньше, чем для уровней с разными п. [c.52]


Смотреть страницы где упоминается термин Поле кулоновское: [c.88]    [c.82]    [c.43]    [c.167]    [c.173]    [c.139]    [c.194]    [c.376]    [c.47]    [c.18]    [c.24]    [c.50]    [c.276]    [c.105]   
Курс квантовой механики для химиков (1980) -- [ c.111 ]




ПОИСК







© 2025 chem21.info Реклама на сайте