Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протоны сольватация

    В обычных условиях замещения в протонных растворителях карбоксилат-анион является одним из наиболее слабых нуклеофилов. Главный фактор, снижающий нуклеофильность, — сильная сольватация аниона. Ионные пары в неполярных апротонных растворителях (ситуация, характерная для МФК) должны [c.124]

    В настоящее время точные значения энергий сольватации протона неизвестны ни для одного растворителя. Поскольку протон наиболее прочно связывается с одной молекулой растворителя, образуя ион лиония, очевидно, что наибольшая доля энергии сольватации падает на этот процесс. Определение этой доли энергии является менее сложной задачей, чем нахождение полной энергии сольватации протона. Для двух молекул — аммиака и воды, энергия присоединения протона известна достаточно точно  [c.246]


    В свое время автор объяснил нелинейную зависимость для кислот величин Ig и Eq от 1/е особым характером взаимодействия протона с растворителями. Эти особенности заключаются в том, что сольватация протонов происходит в две стадии. В первой стадии образуется ион гидроксония + - - HjO НзО , а затем происходит его дальнейшая гидратация  [c.195]

    Энтальпия сольватации одновалентного катиона в среднем близка к —420 кДж/моль двухвалентного к —1850 кДж/моль трехвалентного к —4100 кДж/моль. Видно, что предположение о квадратичной зависимости теплоты сольватации от заряда катиона приближенно выполняется. Отметим, что теплота сольватации протона (-1108 кДж/моль) резко отличается от теплот сольватации других одновалентных катионов, в связи с тем что сольватацию протона следует рассматривать как двухстадийный процесс. [c.229]

    Любой способ стабилизации ионов путем делокализации заряда, будь то за счет групп, входящих в состав иона или за счет сольватации, разумеется, тем эффективнее, чем значительнее смещение электронов к катионному центру или от анионного центра. Такая делокализация, однако, не должна переходить некоторые пределы, за которыми происходит разрыв старых или образование новых ковалентных связей. Один подобный пример мы видели с т./ ет-бутильным катионом (26) при неблагоприятных для существования этого иона условиях происходит разрыв С—Н-связи (той самой, поляризация которой обеспечивает делокализацию заряда) и выброс протона, т. е. разрушение карбкатиона. Можно привести и другой пример. Атомы хлора способны весьма эффективно оттягивать электроны и потому, казалось бы, хоро- [c.75]

    Поскольку в водных растворах вода присутствует в большом избытке, любая кислота, сопряженное основание которой слабее, чем HjO (т.е. имеет меньшее сродство к протону, чем HjO), должна быть почти полностью ионизована. По этой причине невозможно установить различие между силой таких кислот, как НС1 и H IO4 (хлорная кислота) в водных растворах. Обе эти кислоты в водном растворе полностью диссоциированы и поэтому являются сильными кислотами. Однако в растворителях, обладающих меньшим сродством к протону, чем вода, можно установить различия между НС1 и H IO4. Если в качестве растворителя используется диэтиловый эфир, хлорная кислота по-прежнему обладает свойствами сильной кислоты, но НС1 ионизуется лишь частично и, следовательно, оказывается слабой кислотой. Диэтиловый эфир не так сильно сольвати-рует протон, как вода (рис. 5-4). (Сольватация-это обобщение понятия гидратации, применяемое к любым, в том числе неводным растворителям.) Положение равновесия в реакции [c.217]


    Выведенные уравнения в соответствии с экспериментальными данными показывают, что влияние растворителей на силу кислот, оснований и солей подчиняется одним и тем же закономерностям. Диссоциация любых электролитов кислот, оснований и солей зависит от индивидуальных свойств электролитов (от энергии кристаллической решетки, энергии сублимации, а в случае кислот и оснований — еще и от сродства к протону молекул основания и аниона кислоты) и от химических свойств растворителя (химической энергии сольватации ионов, энергии сольватации молекул, а в случае кислот и оснований — еще и от протонного сродства молекулы растворителя и его аниона). Этим объясняется многообразный характер влияния растворителей на силу электролитов. [c.359]

    В апротонных биполярных растворителях переходное состояние сольватируется значительно сильнее, чем в протонных. Сольватация в данно.м случае определяется в основно.м дисперсионными взаимодействиями, которые тем выше, чем больше поляризуемость сольватируемой частицы. Так как в переходном состоянии заряд сильно делокализован, поляризуемость его существенно выше, чем поляризуемость исходного состояния, и это приводит к увеличению сольватации переходного состояния за счет дисперсионных сил и, следовательно, к росту скорости реакции. В ряде случаев ускорение реакций нуклеофильного за.мещения в ароматическом ряду связано именно с увеличением сольватации переходного состояния. По-видимому, по этой же причине реакции с нейтральными нуклеофилами также ускоряются в апротонных биполярных растворителях (следует также учитывать сольватацию нуклеофильного реагента — амина — за счет образования водородных связей). Ниже приведены константы скорости следующей реакции в различных растворителях  [c.426]

    Можно также учитывать два противоположно действующих эффекта эффект заслонения (наибольший в 1(ЫС-конформации) и пространственное торможение сольватации в переходном состоянии при отрыве протона (сольватация наибольшая, если не принимающие участия в реакции части молекулы находятся в заслоненном положении и внутренняя компрессия молекулы велика). [c.290]

    Особый характер носит сольватация протона. Первую стадию взаимодействия протона с растворителем следует рассматривать как химическую реакцию. Образующиеся ионы называются лиониями  [c.418]

    Другой важной характеристикой растворителя по теории Брен-стеда является сродство к протону, которое определяется энергией, выделяющейся при сольватации протона в данном растворителе. Чем больше сродство к протону, тем сильнее выражены основные свойства растворителя. [c.280]

    На первой стадии происходит образование иона гидроксония НзО (АН = —648 кДж/моль), а затем происходит обычная сольватация иона гидроксония с энтальпией процесса примерно -460 кДж/моль. Таким образом, отличие энтальпии сольватации протона от остальных одновалентных катионов связано с дополнительной химической реакцией образования иона гидроксония. [c.229]

    Для решения некоторых задач неорганического синтеза большое значение имеют среды с сильноосновными свойствами. В водной среде невозможно создать основность большую, чем та, которую имеют гидратированные ионы 0Н , —/Сь = 55,3 (разд. 33.4.1.5). Гидратированные ионы 0Н сильно отличаются по степени основности от свободных ионов ОН . Стабилизированная водородными мостиками гидратная оболочка экранирует свободную пару электронов гидроксид-иона, в то же время для свободного иона ОН" (/Сь 10 ) способность к присоединению протона возрастает на несколько порядков. Применение в качестве среды дипольных апротонных растворителей, в которых невозможна сольватация анионов, позволяет проявиться сильноосновным свойствам свободного иона 0Н . [c.458]

    Растворимость, константы диссоциации и другие свойства электролитов рассчитываются по разности между очень большими и близкими величинами энергий кристаллической решетки или сродства протона в вакууме и химической энергии сольватации ионов, поэтому ошибки в определении этих величин сильно сказываются на конечных результатах. Так, ошибка в 1% при определении химической энергии сольватации приводит к различию па один порядок в величине констант диссоциации. В связи с этим данные о величинах химической энергии сольватации могут быть использованы только для решения вопроса о направлении процесса, например для решения вопроса о том, в каком направлении влияет растворитель на растворимость электролитов, но они мало пригодны для численной характеристики влияния растворителей на свойства электролитов, на их растворимость, силу и т. д. [c.184]

    Особый интерес в связи с проблемой единой шкалы кислотности (см. гл. IX) представляют данные об изменении энергии (изобарного потенциала) при переносе протона из неводного растворителя в воду и соответственно данные о коэффициентах активности y о отдельно протона. Для их оценки необходимы данные об изменении изобарного потенциала — химической энергии сольватации протона в различных неводных растворителях и в воде. [c.202]


    Энергия сольватации протона [c.195]

    Именно высокими значениями протонного сродства молекул растворителя объясняется то обстоятельство, что кислоты практически не диссоциируют в вакууме и легко диссоциируют в растворе. Так, для отрыва протона от молекулы НС1 необходимо затратить (325 ккал/моль) 1385-Ю Дж/моль. Это протонное сродство ионов хлора. Необходимая для этого энергия компенсируется энергией сольватации протона(264 ккал/моль) 1100 X X 10= Дж/моль и энергией сольватации иона хлора (79 ккал/моль) 330 X X 10 Дж/моль, что в сумме дает (343 ккал/моль) 1333-10 Дж/моль, т. е. энергию, достаточную для того, чтобы процесс диссоциации хлористого водорода на ионы стал возможным. [c.197]

    Если умножить выражение для Ig 7 протона на величину RT, получатся изменения изобарного потенциала при переносе протонов из вакуума в данную среду. Первые два члена характеризуют изменение энергии в связи с присоединением протона к молекуле растворителя и образованием иона лиония в вакууме, вторые два члена характеризуют изменение энергии при дальнейшей сольватации иона лиония. Исходя из этого выражения, можно подсчитать Ig 7он+ если известно изменение свободной энергии, при переходе протона из вакуума в данную среду. [c.198]

    По разности химических энергий сольватации отдельных ионов эти величины могут быть вычислены и для любых ионов. Величины 7о показывают изменение кислотности сольватированного протона при его переходе из одной среды в другую в единицах кислотности.. [c.203]

    Сольватация протона отличается от сольватации других ионов как по величине энергии, так и по механизму. [c.289]

    Водородная связь между кислотой и основанием, например растворителем, двояко влияет на силу кислот. С одной стороны, образование продуктов присоединения поляризует молекулу кислоты и как бы подготовляет ее к дальнейшей диссоциации, но, с другой стороны, образование прочного продукта присоединения уменьшает активную массу диссоциирующей кислоты и тем самым уменьшает ее способность к диссоциации. Энергия, выделенная при образовании продукта присоединения, является результатом выделения энергии при образовании собственно водородной связи и поглощения энергии, затрачиваемой на деформацию связей между водородом и остальными атомами в молекуле, например, затратой энергии на деформацию связи ОН в молекулах фенолов и карбоновых кислот. Выделенная свободная энергия является результатом суммарного эффекта. Так как энергия выделяется, образование водородной связи уменьшает способность кислоты к диссоциации. Большая способность кислот к диссоциации в растворителях, образующих более прочные соединения, является результатом того, что, как правило, эти растворители более основные и характеризуются большей энергией сольватации ионов, и в первую очередь протонов. Большая энергия сольватации компенсирует уменьшение свободной энергии раствора при образовании водородной связи. В результате этого кислоты в таких растворителях диссоциируют сильнее. [c.294]

    В принципе выведенные уравнения позволяют количественно оценить силу электролитов из независимых данных однако недостаточная точность данных об энергиях кристаллической решетки, о протонном сродстве и о химических энергиях сольватации ионов не дает этой возможности. [c.316]

    Это относится и к изменению силы кислот и оснований, для которых химическая энергия сольватации ионов включает и энергию протонного сродства молекул растворителя. [c.316]

    При этом следует иметь в виду, что в уравнении (VH.IO) для кислот представляет сумму химических энергий сольватаций иона лиония (а не протона) и аниона кислоты 2 Соответственно в уравнении (VII,11) для основа- [c.316]

    Основания, способные к образованию водородной связи в качестве доноров протона (содержащие водород) и не способные к их образованию (не содержащие водорода), по-разному взаимодействуют с растворителями и эго взаимодействие сопровождается различным выделением энергии. Энергия сольватации ионов основания зависит от их химической природы. Можно ожидать большого различия во влиянии растворителя на алифатические и ароматические основания, которое будет следствием различного распределения заряда в катионе. [c.353]

    Однако данные об энергиях сольватации отдельных ионов (см. 32), и в том числе протонов, в различных растворителях исключают необходимость в таком едином электроде сравнения, так как позволяют вычислить изменение потенциала водородного и других электродов при их переходе из одной среды в другую, приняв потенциал нормального водородного электрода в воде равным нулю. [c.399]

    В отличие от солей Ig Yo ионов кислот дая е в ряду растворителей одной природы не является линейной функцией 1/е (см. рис. 104, 2а). Как мы видели, это является следствием особенностей сольватации протонов. Ие линейна зависимость от 1/е и э. д. с. цепей, содержащих водородный элемент (см. рис. 104, 2, б и б) не линейной должны быть зависимости от 1/е и растворимости сильных кислот. Только в тех случаях, если основность ряда растворителей с различной диэлектрической проницаемостью остается неизменной, как, например, в смесях неводных растворителей с водой при большом ее содержании, наблюдается линейная зависимость свойств от 1/е. [c.402]

Рис. 5-4. ОтносительР1ая прочность сольватации иона водорода в жидком аммиаке (а), воде (б) и диэтиловом эфире (й). Связь между протоном и сольватирующими молекулами аммиака чрезвычайно прочна, поэтому жидкий аммиак отщеп Еяет протоны даже от тех веществ, которые в водном растворе являются лишь слабыми кислотами, и превращает их в сильные кислоты. В отличие от этого диэтиловый эфир настолько слабо сольватирует протон, что многие вещества, растворы которых в воде представляют собой сильные кислоты, в диметиловом эфире способны удерживать С1ЮИ протоны и оказываются в нем лишь частично диссоциированными слабыми кислотами. Знаки плюс и минус означают частичные заряды, обусловленные локальным дефицитом и избытком электронов соответственно. Рис. 5-4. ОтносительР1ая прочность <a href="/info/9393">сольватации иона</a> водорода в <a href="/info/15948">жидком аммиаке</a> (а), воде (б) и <a href="/info/1007">диэтиловом эфире</a> (й). <a href="/info/26849">Связь между</a> протоном и <a href="/info/1039060">сольватирующими молекулами</a> аммиака чрезвычайно прочна, поэтому <a href="/info/15948">жидкий аммиак</a> <a href="/info/1547987">отщеп</a> <a href="/info/269632">Еяет</a> протоны даже от тех веществ, которые в <a href="/info/6274">водном растворе</a> являются лишь <a href="/info/5209">слабыми кислотами</a>, и превращает их в <a href="/info/18713">сильные кислоты</a>. В отличие от этого <a href="/info/1007">диэтиловый эфир</a> настолько слабо <a href="/info/870193">сольватирует протон</a>, что многие вещества, растворы которых в воде представляют <a href="/info/1795776">собой</a> <a href="/info/18713">сильные кислоты</a>, в <a href="/info/17587">диметиловом эфире</a> <a href="/info/30036">способны удерживать</a> С1ЮИ протоны и оказываются в нем лишь частично диссоциированными <a href="/info/5209">слабыми кислотами</a>. Знаки плюс и минус означают <a href="/info/708967">частичные заряды</a>, обусловленные локальным дефицитом и избытком электронов соответственно.
    Авторы [32—34] использовали вклад в сдвиг протонов алкиламмо-ниевой группы ионной пары R4N MXзL для оценки расстояния между анионом и катионом (г) в ионной паре и для изучения эффектов сольватации. В первом случае задавались геометрией ионной пары. В спектре ионной пары с Я — н-бутил наблюдаются четыре протонных сигнала. Этот спектр можно попытаться согласовать с уравнением (12.23) (или другой, более удобной формулой) путем варьирования расстояния в так называемом геометрическом факторе [(1 - 3соз 0,)/г, ]. Для удобства мы запишем уравнение для псевдоконтактного сдвига как [c.188]

    Сольватация протона отличается от сольватации остальных ионов как по механизму, так и по величине энергии этого процесса. Протон присоединяется к первой молекуле растворителя (основания) за счет координационной связи. Большая энергия сольватации протона позволяет преодолеть протонное сродство диссоциирующего вещества. В результате этого при кислотноосновном взаимодействии происходит передача протона от одного вещества (кислоты) к другому (основанию), и образованный продукт присоединения диссоциирует на ионы. В этом смысле мерой силы кислот и оснований является их протонное сродство. [c.301]

    Амфотерные растворители, такие, как Н2О, ROH, NH3 или R O2H, не только ограничивают область возможных значений рКа, но через сольватацию и диэлектрические эффекты оказывают сильное влияние на ионизационное равновесие. Например, сильные кислоты, растворенные в уксусной кислоте, хотя они не целиком ионизованы, образуют сольватированный протон СНзСОгН2% обладающий гораздо большей силой ки- лоты, чем НзО .  [c.37]

    Другой важной характеристикой растворителя в теории Бремстеда является сродство к протону. Сродство к протону определяется энергией, которая выделяется при сольватации протона в данном растворителе. Чем больше протонное сродство, тем сильнее В1з1ражены основные свойства растворителя. [c.246]

    Различие в теплотах сольватации (или адсорбции) карбоний-ионов при использовании различных катализаторов должно приводить к существенному изменению соотношения тепловых эффектов реакций данного карбоний-иона и разных карбоний-ионов в данной реакции. Свойства карбоний-иона, находящегося в паре с про-тивоионом, могут, по-видимому, сильно зависеть от свойств аниона. В системе М---Н---А в зависимости от соотношения основностей (сродства к протону) М и А" локализация протона может быть различной, что должно отражаться на свойствах карбоний-иона. [c.171]

    Аналогичным образом степень сольватации нуклеофильных частиц, например анионов, в АПЭ-растворителях пропорциональна акцепторному числу А . Частицы, имеющие в своем составе сильноотрицательные атомы, например Р, О, Ы, в большей степени сольватируются протонными АПЭ-растворителями. Эти растворители являются донорами протонов и на основе механизма образования водородных мостиков создают стабильную структурированную сольватную оболочку, в которой протон находится в потенциальном поле двух электроотрицательных атомов. Особенно прочные водородные мостики образуются с группами О—Н---Р, О—Н---0, О—Н---Ы и N—Н---0. Впрочем, способность к Образованию водородных мостиков, а следовательно, и способность к сольватации резко снижается при увеличении размеров и поляризуемости анионов. [c.449]

    Энергия сольватации протона зависит прежде всего от сродства протона к молекулам растворителя. Эта энергия может быть рассчитана квантовомеханическим путем, методом объединенного атома. Суммарная энергия сольватации протона представляет сумму энергии сродства (энергии образования ионов лиопия), первичной и вторичной энергий сольватации ионов лио-ния. [c.179]

    Величины энергии сольватации ионов, рассмотренные в предыдущих параграфах, как и величины энергии сольватации молекул, которые будут рассмотрены в следующей главе, имеют большое значение в теории растворов, так как ими определяются многие их свойства. Данные о химической энергии сольватации вместе с данными об энергии кристаллической решетки соли определяют такое важное свойство электролитов, как растворимость. Химические энергии сольватации ионов и молекул электролита вместе с данными о сродстве иопов диссоциирующих веществ определяют положение равновесия между ионами и молекулами электролита, т. е. константу их диссоциации. Химическая энергия сольватации ионов в значительной степени определяет электродвижущую силу химических элементов. Наконец, химическая энергия сольватации протонов определяет абсолютную кислотность растворов. [c.183]

    Разные исследователи принимают различное значение величины сродства молекул воды и различные значения теплоты сольватации иона гидроксония. Миш,енко принимает теплоту гидратации 459,4-10 Дж/моль (110 ккал/моль) и, следовательно, величину Ян о = 643-10 Дж/моль (154 ккал/моль), Яцимирский принимает Ян о = 837 -10 Дж/моль (200,0 ккал/моль) и = 314-10= Дж/моль (75 ккал/моль) (по Райсу), ЯнгО = 711 -10 Дж/моль (170 ккал/моль) (по Юзу) и 770-10 Дж/моль (184 ккал/моль) (по Бриглебу). Кондратьев и Соколов на основании предположения о равенстве энергии изоморфных кристаллов NH4GIO4 и H3O IO4 нашли ЯнгО = 778-10= Дж/моль (186,6 ккал/моль) и Яг= 297 X X 10= Дж/моль (71,3 ккал/моль). Несмотря на большой разброс данных, из них с ясностью следует, что высокое значение энергии сольватации протона обусловлено большой величиной протонного сродства. [c.196]

    Коэффициенты активности 7 о определяются разностью в энергии гидратации и сольватации ионов, в данном случае разностью между суммой величин (I7 jjjj+ -f- U p) для протонов в воде и неводном растворителе (примем растворитель М)  [c.198]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]


Смотреть страницы где упоминается термин Протоны сольватация: [c.406]    [c.118]    [c.498]    [c.163]    [c.390]    [c.198]    [c.315]    [c.350]   
Принципы органического синтеза (1962) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте