Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография комплексов включения

    Жесткие стерические требования, обусловливающие возможность образования комплексов типа хозяин—гость , предполагают, что это явление может быть стереоселективным. Следовательно, при использовании хирального хозяина можно разделить энантиомерные гостевые молекулы. Этот принцип полностью или отчасти используется в ряде методов жидкостной хроматографии, описываемых в гл. 7. Рассмотрим кратко процесс образования комплексов включения, действительно или предположительно имеющий место при разделении энантиомеров. [c.78]


    Принцип определения отличия свойства смеси компонентов от свойства комплекса положен в основу установления комплекса другими методами газовой и тонкослойной хроматографии [47], ИК- и УФ-спектрометрии [48], дифракции [49]. Для доказательства образования комплексов включения применены также методы ЯМР- и ПМР-спектроскопии [50]. [c.599]

    Лучшие результаты были получены в случае применения си-локсановых эластомеров, нанесенных на хромосорб . В качестве газа-носителя использовались очиш енные от кислорода и влаги гелий и азот. Детектором служил катарометр. Для увеличения чувствительности катарометра в электрическую схему был включен усилитель типа Ф-116/2. Ввод веш,ества в испаритель хроматографа осуществлялся с помощью микрошприца. Перед анализом тщательно продували хроматографическую колонку газом-носителем в течение нескольких часов для удаления из сорбента следов кислорода. С этой же целью в колонку вначале вводили 2— 3 пробы исследуемых соединений хрома, после чего наблюдалась хорошая воспроизводимость результатов анализа. Нарушение этих условий приводит к значительному разложению комплексов в ходе ана.тиза. [c.126]

    В газожидкостной хроматографии, как недавно выяснилось, можно использовать эффект образования комплексов включения, который в свое время привел к появлению химии соединений типа хозяин—гость (см. разд. 5.2.3). Хиральным лигандом в данном случае служит циклодекстрин (ЦД), смешанный с полярным растворителем, вьшолняющим роль своего рода жидкой матрицы. В хиральной ГХ насадочные колонки заполняют цеолитами, покрытыми неподвижной фазой такого типа. Этот метод позволяет достигнуть значительной энантиоселективности при разделении энантиомеров ряда углеводородов. Однако разделение в режиме ГХ на этих колонках должно проводиться при слишком низких температурах (<70 °С). [c.97]

    Поскольку образование комплексов включения с ЦД в водных системах связано в основном с гидрофобными взаимодействиями, вполне логично, что разделение на колонках с ЦД осуществляется главным образом в режиме обращенно-фазовой хроматографии. Соответственно и элюентами в данном методе являются те же растворители, что и в обычной обращенно-фазовой хроматографии. Чаще всего это — метанол/вода или ацетонитрил/вода. Следова- [c.111]

    Эти подходы, как отмечалось выще, часто используются в газовой хроматографии, однако нет никаких принципиальных ограничений для их применения и в ВЭЖХ, осуществляемой в изократических условиях [178, 179, 182]. Лля всех видов хроматографии, в которых удерживание обусловливается образованием комплексов включения между хроматографируемыми соединениями и неподвижной фазой, мертвый объем предложено находить из графической зависимости между Vr и размерами молекул веществ [183]. [c.239]


    По-видимому, большая часть микроэлементов, в особенности это касается переходных металлов, в асфальтенах координационно связана по донорно-акцепторному типу. При этом в роли доноров электронов могут выступать гетероатомы, включенные в полициклоароматические системы асфальтенов, и в некоторой степени углеродные радикальные центры, образованные дефектами этих систем [913]. Атомы металла в таких случаях могут размещаться как внутри молекулярных асфальтеновых слоев, так и в межслоевом пространстве [12, 914]. Внутрислоевые комплексы более прочны и устойчивы к действию деметаллирующих агентов. Особо прочные комплексы образуются в том случае, когда донорные центры располагаются в плоском молекулярном асфаль-теновом слое внутри окна с размерами, близкими к ковалентному диаметру связываемого металла (аналогично структуре II) [263, 893]. На основании изучения распределения микроэлементе при гёль-хроматографии асфальтенов делается однозначный вывод о том, что Ге, Со, Нд, 2н, Сг и Сн внедрены в пустоты слоистой структуры асфальтенов, ограниченные атомами 3, N или О [761- [c.169]

    Среди большого и разнообразного по своей природе комплекса методов, применяемых в химии и геохимии нефти, исключительно важное место занимают методы разделения ее компонентов. К ним прежде всего относятся различные виды перегонок при атмосферном давлении и в вакууме, азеотропная, молекулярная и др. Не менее важное значение имеют методы хроматографического разделения углеводородных и неуглеводородных компонентов нефти, включающие в себя вытеснительную, элюентную, тонкослойную, бу.мажную, а также газожидкостную хроматографию, В этот же комплекс входят методы выделения различных классов УВ, основанные на получении аддуктов (соединений включения) или проведении специфических химических реакций (например, дегидро-генизационный катализ шестичленных нафтеновых УВ) , В последнее время получили развитие методы термодиффузионного разделения углеводородных смесей. [c.86]

    Подобно аффинной хроматографии, аффинный электрофорез в геле можно применять для определения констант диссоциации комплексов белок — лиганд. Принцип метода заключается в изучении зависимости подвижности данного белка от концентрации связанного лиганда в геле. Этот лиганд может быть либо ковалентно связан с гелем, либо только включен в гель (последнее обусловлено высокомолекулярными свойствами лиганда). Впервые такое использование электрофореза описано Такео и Накамурой [50], (хотя в этой работе еще не введен термин аффинный электрофорез ) константы диссоциации комплексов фосфорилаза— полисахарид определены с помощью электрофореза в полиакриламидном геле, содержащем различные концентрации ковалентно связанного полисахарида. Бег-Хансен [9] применил электрофорез на сефарозе с ковалентно связанным конканавалином А для определения констант диссоциации комплексов конканавалина А с сывороточными гликоиротеинами. [c.168]

    Очень эффективные сами по себе методы разделения с помощью нескольких форм лабораторных, аналитических и препаративных хроматографических систем стали еще более избирательными благодаря применению в процессе разделения соединений включения. Как и молекулярные сита, успешно используемые для количественного определения нормальных парафинов в смеси углеводородов [251, многие ранее описанные канальные и клеточные соединения включения обнаружили высокую избирательность при разделении смесей, и в некоторых случаях такое разделение оказалось количественным. Например [49], с помощью распределительной хроматографии на колонке с дитиоцианатом тетра-(алкилпиридин)-никеля (комплексом вернеровского типа) были количественно разделены [c.518]

    Для достижения более глубокой дифференциации высокомолекулярных углеводородов Н. И. Черножуков применил комплексную методику, в которой комбинируются три различных метода. Данная методика позволяет осуществить дальнейшее разделение сложных углеводородных смесей по типам структур и получить смеси, более простые, содержащие в своем составе группы углеводородов, более близкие по строению и молекулярному весу. Сначала дистиллатные масляные фракции подвергались депарафинизации с применением трехкомпонентного избирательно действующего растворителя (бензол толуол ацетон = 40 20 40), обычно используемого при депарафинизации масел в заводском процессе их получения. Остаточные продукты сначала деасфальтизировались, а затем депарафинизировались. Освобожденная таким образом от парафиновых углеводородов фракция подвергалась затем дальнейшей дифференциации при помощи двух методов метода адсорбционной хроматографии на силикагеле с целью разделения на три основные структурные группы углеводородов (парафино-циклопарафиновая и две фракции ароматических углеводородов) и метода комплексообразования с карбамидом, с целью выделения углеводородов, структура молекул которых хотя и носит гибридный, т. е. смешанный характер, но содержит в своем составе парафиновые цепочки достаточно длинные, чтобы образовать с карбамидом кристаллические комплексы или так называемые соединения включения [116, [c.303]


    Путем обработки фрагментов мембраны неионным детергентом (таким, как производное полиоксиэтилена твин-80) удалось солюбилизировать рецепторы ацетилхолина электрического органа. Полученный раствор фракционировали методами гель-фильтрации и ионообменной хроматографии. Последним этапом очистки была аффинная хроматография на колонке, содержащей ковалентно связанный кобратоксин. В итоге был получен рецептор, очищенный в 10000 раз. Ацетилхолиновый рецептор представляет собой комплекс массой 270 1 Да, состоящий из четырех типов субъединиц. Субъединица 40 ьЩа метится по сродству радиоактивными соединениями, содержащими группу триметиламмония, что указывает на наличие в ней участка связывания ацетилхолина. Удалось получить мембранные пузырьки, содержащие очищенные рецепторы ацетилхолина для этого к раствору рецепторов добавляли фосфолипиды и затем удаляли диализом детергент. Показано, что радиоактивные ионы натрия ( Na "), включенные в процессе реконструирования пузырьков в их внутреннее водное пространство, высвобождаются при добавлении ацетилхолина или его аналогов, например карбамоилхолина (рис. 37.10). Высвобождение ионов натрия блокируют бунгаротоксин и обычные антагонисты ацетилхолина следовательно, оно опосредовано специфическим взаимодействием ацетилхолина со связанным с мембраной рецептором. [c.333]


Смотреть страницы где упоминается термин Хроматография комплексов включения: [c.113]    [c.79]    [c.163]    [c.200]    [c.292]    [c.292]   
Хроматографическое разделение энантиомеров (1991) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы включения

включения



© 2024 chem21.info Реклама на сайте