Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фоторецепторы

    У хиноновых пигментов нет какой-либо одной общей функции. Они не играют важной роли в качестве пигментов в фотосинтезе или фоторецепторов в других процессах. Они [c.118]

    Видимый свет — это тот диапазон световой энергии, который используется растениями и микроорганизмами в процессе фотосинтеза. С помощью фотосинтеза атмосферная двуокись углерода фиксируется в такой химической форме, которая используется не только самими растениями, но и служит первичным источником пищи для всего живого мира. Различные фоторецепторы регистрируют также вариации в количестве до- [c.9]


    Наружные покровы животных как фоторецептор [c.381]

    Палочки воспринимают только слабый свет, колбочки функционируют на ярком свету и ответственны за цветовое зрение. В сетчатке глаза человека около 1 млн колбочек и 1 млрд палочек. Эти фоторецепторы преобразуют энергию света в химический процесс и затем - в нервный импульс в такой последовательности свет рецептор химические реакции нервные импульсы. Чувствительность фоторецептора так высока, что уже один фотон вызывает возбуждение палочки. [c.110]

    Энергия падающего света поглощается фотосинтезирующими пигментами в органеллах, называемых фоторецепторами (хлоропласты в высших растениях, пластиды в водорослях, хроматофоры в фотосинтезирующих бактериях). Преобладающим пигментом является хлорофилл любой организм, способный осуществлять фотосинтез, содержит по меньшей мере одну разновидность хлоро- [c.396]

    Из многих фотореакций, опосредованных фитохромом, лучше всего изучены, вероятно, инициация цветения, прорастание семян и позеленение этиолированных тканей. В первом случае очень кратковременное освещение даже части растения (одного листа) светом требуемой длины волны инициирует реакцию, для завершения которой необходимо несколько недель. Ясно, что при этом происходит экспрессия новой генетической информации. В природных условиях начало цветения определяется длиной дня, или, говоря более точно, продолжительностью темпового периода. Так, у растений короткого дня цветение начинается в условиях длинной ночи и короткого дня, в то время как для растений длинного дня необходимы прямо противоположные условия — длинный световой и короткий темновой период. В обоих случаях фитохром является фоторецептором, который опосредует реакцию. [c.371]

    В процессах зрения участвуют светочувствительные пигменты, расположенные в сетчатке глаза (ретине). Из зрительных пигментов лучше всего изучен родопсин, являющийся у млекопитающих, в том числе и у человека, фоторецептором палочек сетчатки— клеток, ответственных за сумеречное зрение. Родопсин представляет собой комплекс гликопротеина опсина с 11-1<ис-ретина-лем. Связь осуществляется посредством образования основания Шиффа (57) между альдегидной группой ретиналя и аминогруппой остатка лизина в молекуле опсина. Несмотря на то что сам по себе ретиналь бесцветен [Хмакс 383 нм (в этаноле)], образование протонированного основания Шиффа (58) сопровождается резким батохромным сдвигом, и родопсин поглощает свет в видимой области ( макс 500 нм). Родственные комплексы ретиналя или [c.538]


    Для индуцирования цветения растениям длинного дня необходимы условия с длинным днем и короткой ночью, тогда как растения короткого дня цветут только в условиях короткого дня и длинной ночи. Объясните, как один и тот же фоторецептор, фитохром, может индуцировать цветение у растений обоих типов. [c.402]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]

    Первая часть этой книги посвящена биохимии природных пигментов различных классов, которые придают окраску содержащим их тканям. Далее (в гл. 8) подчеркивалась важность свойства быть окрашенным как для выживания индивида, так и для распространения вида. Ясно, что все это имеет значение лишь в том случае, если окраску и характер ее распределения могут увидеть и распознать различные животные. Другими словами, животные должны обладать способностью обнаруживать свет, а также различать свет разных длин волн. С этой целью у них развились фоторецепторные органы — глаза, в которых центральную роль играют поглощающие свет фоторецепторы, или зрительные пигменты. В дополнение к собственно фоторецепторным пигментам часто используются другие пигменты, играющие вспомогательную роль. В связи с этим в книге о природных пигментах нельзя не остановиться на процессах фоторецепции и зрения. И не только потому, что фоторецепторные молекулы интересны сами по себе, но также и потому, что большинство других природных пигментов были бы не нужны и никогда ие появились, если бы такого механизма различения цветов не существовало. [c.297]

    Фоторецепторные структуры были найдены в эпифизе земноводных. Аналогичные структуры были обнаружены в родственных органах рептилий — в так называемом лобном органе и в теменном глазу . Рецепторные клетки этих структур, по крайней мере внешне, сходны с фоторецепторами сетчатки и связаны с мозгом нервами. Природа пигментов в фоторецепторных структурах пока не выяснена. [c.380]

    В некоторых случаях в качестве фоторецепторов функционируют нервные клетки. Хорошо известный пример — генитальный ганглий у моллюска А ply sia. Нервные клетки этого ганглия содержат каротиноид и гемопротеин и поэтому очень чув- [c.382]

    В области идентификации фоторецепторов, а также изучения на молекулярном уровне изменений, происходящих в ходе функционирования этих фоторецепторов и наблюдаемых при  [c.391]

    Фоторецепторы глаза выполняют совершенно иные функции, чем хлоропласты. Зрительные рецепторы предназначены для инициации нервного импульса, и поэтому их главным свойством является высокая чувствительность — некоторые рецепторы улавливают практически каждый падающий на них фотон. Этой цели служат многослойные мембраны, в которые включены в большом количестве сильно поглощающие Молекулы [133, 133а]. [c.61]


    ЭТОМ реакций, для биохимиков существует широчайшее поле деятельности. Такая работа чрезвычайно трудна, поскольку фоторецепторы обычно присутствуют в тканях в крайне малых количествах, а изменения, по которым можно судить о реакции, могут быть очень незначительными. Эти проблемы представляют собой вызов мастерству биохимика. Наряду с явлениями, описанными в этой главе, по-видимому, существует много других форм или примеров взаимодействия между светом и живыми организмами (через природные пигменты), которые пока еще не открыты и могут служить новыми объектами исследования. [c.392]

    Сетчатка глаза птиц содержит несколько фоторецепторов, включающих зрительные пигменты, и ряд интенсивно, но по-разному окрашенных масляных капель, которые действуют как светофильтры свет достигает рецептора только после прохождения через масляную кайлю. Рассмотрим систему из двух фоторецепторов, поглощающих в диапазоне 400—600 нм (Ятах = 500 нм) и 470—670 нм (Ятах = 570 нм), и две масляные капли, поглощающие при 400—500 нм (Ятах = 450 нм) и 420— 520 нм (Лтах = 470 нм) соответственно. Какое действие окажет кал<дый из этих фильтров на поглощение света каждым фоторецептором и каким образом это скажется на чувствительности различения оттенков (Предполагается, что все спектры имеют симметричную форму.) [c.401]

    Спектр действия фототропной реакции гриба очень сходен со спектром поглощения как р-каротина, так и рибофлавина. Предложите экспериментальный подход, с помощью которого можно было бы определить, какой из этих пигментов является фоторецептором. [c.402]

    Некоторые функции тетрапирролов, не связанные с их светоплоглощающими свойствами, мы уже отмечали (особенно кислородпереносящую функцию гемоглобина). Однако большинство биологических функций этих пигментов связано с их светопоглощающими свойствами. Так, например, они придают окраску тканям, участвуют в фотосинтезе и служат фоторецепторами. Этим темам будут посвящены гл. 10 и 11. [c.219]

    Постройте графики спектров поглощения для фоторецепторов в присутствии и в отсутствие масляных капель. Имейте при этом в виду, что капли интенсивно окрашены и значительная часть света с длинами волн в диапазоне их поглощения не достигнет фоторецептора. Из графика станет ясно, каким образом с помощью этих капель достигается получение более узких и лучше разделенных спектров поглощения зрительных пигментов. [c.408]

    Несмотря на неизбежные межвидовые различия, эволюция животных, вероятно, будет происходить в направлении использования фоторецепторов, которые наиболее эффективно поглощают свет, проникающий на большую глубину в условиях их обитания. Для окрашивания же будут использоваться пигменты, максимально поглощающие либо максимально пропускающие свет в этом оптимальном диапазоне длин волн. Свободное перемещение животных между различными средами обитания предполагает необходимость использования ими фоторецепторов для различных условий освещения при этом они могут использовать более сложные комбинации пигментов. [c.408]

    Это сделать очень трудно. Такой фоторецептор должен содержаться в очень небольших количествах вместе с другими неактивными пигментами, концентрация которых гораздо больше. Вероятно, для этой цели можно использовать сложный метод спектроскопического исследования быстрых процессов. Не исключено, однако, что единственный путь, с помощью которого можно было бы установить природу действующего фоторецепторного пигмента, — это его выделение и химическая идентификация. [c.409]

    Единственной в своем роде мембраной является пурпурная мембрана бактерии На1оЬас1егшт ка1оЫит в ней содержится только один белок—бактериородопсин. Полная аминокислотная последовательность бактериородопсина не определена, однако установлена [27] последовательность аминокислот около места связывания фоторецептора (ретиналя) 01у-Уа1-5ег-Азр-Рго-Азр-Ьу8-Ьу5 -РЬе-Туг-А1а-Пе-Ме1 (звездочкой обозначено место связывания). [c.122]

    Свет. Наиболее широко исследовалось влияние света. Обычно свет стимулирует синтез флавоноидов, особенно антоцианов,. влияя главным образом на активность участвующих в этом процессе ферментов. По своей реакции на индукцию светом эти ферменты подразделяются на две группы. ФАЛ и ферменты,, которые превращают коричную кислоту в п-кумароил-СоА,. индуцируются значительно быстрее, чем ферменты, катализирующие более поздние биосинтетические реакции и образующие вторую группу. Синтез ферментов de novo начинается после индукции светом, причем главной регуляторной точкой является ФАЛ. У многих видов показано участие в этом процессе фитохрома, однако могут также функционировать и другие фоторецепторы, например флавин или флавопротеин. Интересно отметить, что регулируется, по-видимому, только образование кольца В (шикиматный путь), тогда как синтез кольца А (поликетид-ный путь) не подвержен регуляции. [c.150]

    Распространение. Оммохромы представляют собой характерные пигменты глаз насекомых и других членистоногих. Они функционируют в глазах не как фоторецепторы, а как защитные пигменты, которые предохраняют фоторецепторы от повреждения рассеянным светом (гл. 9). Оммохромы широко распространены в наружных покровах членистоногих и других беспозвоночных, главным образом у головоногих, а также найдены в яйцах и различных тканях некоторых червей. Предпо- [c.247]

Рис. 9 3. Схематическое изображение фоторецептора позвоночных (палочкн). Рис. 9 3. <a href="/info/376711">Схематическое изображение</a> <a href="/info/1397766">фоторецептора позвоночных</a> (палочкн).
    Регуляция развития хлоропластов светом. Окончательное состояние тилакоидных мембран зависит от условий окружающей среды, главным образом от освещения. Хлоропласты, развивавшиеся при высоких интенсивностях освещения, имеют относительно небольшие, но высокоэффективные ФС I и ФСН, тогда как ССК У них редуцированы. При более низких интенсивностях освещения, при которых поглощение света должно быть по возможлости максимально эффективным, большое значение имеет синтез ССК, связанный с организацией тилакоидов в граны. Имеются сообщения, что первичными регуляторами развития хлоропластов служат красный свет и фитохромнаЯ система. Однако, согласно другим сообщениям, важную роль в данном случае играет синий свет и пока еще неизвестный фоторецептор. [c.359]

    При перемещении или росте грибных гиф в направлении света фоторецепторным пигментом также служит рибофлавин, тогда как ауксин в этом не участвует. В некоторых недавно опубликованных сообщениях высказывается предположение о-том, что первичный рибофлавиновый фоторецептор образует комплекс с белком и с антенной из каротиноидных молекул которая повышает эффективность улавливания света. [c.377]

    В первой части настоящей книги были описаны основные характеристики главных групп природных пигментов. В предыдущих главах второй части обсуждались наиболее известные и понятные биологические функции этих пигментов, а именно окрашивание, улавливание света и распознавание цвета (зрение), а также улавливание энергии света в фотосинтезе. В этой последней главе объединены некоторые другие аспекты фотобиологии, описаны процессы, в которых природные пигменты играют важную роль. Здесь рассмотрены фоторецепторы, такие, как фитохром и флавины, которыми обладают растения и микроорганизмы, а также бактериородопсин, используемый для образования АТР у Haloba teria. [c.391]

    Некоторые галофильные бактерии способны использовать энергию света для образования АТР с помощью процесса, который не похож на фотосинтез у растений или бактерий. В частности, Н. halobium используют для образования АТР обычное аэробное дыхание, если имеется в достаточном количестве необходимый для этого кислород. В условиях же нехватки кислорода в клеточной мембране этих бактерий появляются специфические пурпурные образования, так называемые заплаты (pat hes). Пигмент, обусловливающий их пурпурную окраску, представляет собой белок бактериородопсин. Последний служит фоторецептором в процессе превращения энергии света в протонный градиент, который в свою очередь является движущей силой синтеза АТР с помощью хемиосмотического механизма. Фоточувствительная пурпурная мембрана состоит из липопротеинового матрикса, причем с помощью дифракции рентгеновских лучей показано, что молекулы бактериородопси-на расположены в этой мембране в виде жесткой двумерной решетки. [c.377]

    В настоящее время не вызывает сомнений, что у многих животных сетчатка глаза является не единственной светочувствительной тканью. Внеглазные фоторецепторы обнаружены к настоящему времени у многих видов как позвоночных, так и беспозвоночных животных. Эти фоторецепторы не позволяют животному видеть , как зто происходит при истинном зрении, когда животное способно воспринимать образ, а также быстро распознавать форму, положение и перемещение объекта в пространстве. Однако они принимают участие в опосредовании долговременных эффектов, которые зависят от изменений общей интенсивности освещения. Примерами процессов, которые регулируются светом, детектируемым внеглазными рецепторами, могут служить поддержание суточных ритмов и ритмов с более длинными периодами (лунных) изменения окраски в ответ на изменения освещенности фона (посветление или потемнение кожи) и изменения сроков метаморфоза (влияние на диапаузу у некоторых насекомых). Тот факт, что реакция на интенсивность освещения осуществляется не с помощью глаз, а каким-то иным путем, можно подтвердить тем, что эта реакция не подавляется и не ослабляется у ослепленных животных. Фоточувствительные ткани могут быть локализованы в специфических органах, таких, как глазки (стигмы) и эпифиз, либо [c.379]

    Одним из наиболее высокоразвитых примитивных фоторецепторов является так называемый медиальный глазок многих членистоногих. Так, например, мечехвост ЫтиЫз ро-1уркетиз обладает парой таких рецепторов, которые расположены на средней линии тела. Хотя эти органы представляют собой примитивные глазки, они снабжены хрусталиковыми структурами. [c.380]

    В чем-то сходна с ними гардерова железа у новорожденных грызунов, которая, как считают, является внеглазным фоторецептором, контролирующим их циркадианные ритмы. Эта железа наряду со значительным количеством протопорфирина IX (11.7) содержит необычный, с тремя карбоксильными группами, порфирин (11.6). Напрашивается предположение, что эти порфирины представляют собой фоторецепторные пигменты, но оно пока не проверено. [c.381]

    Один из разделов посвящен встречающимся у животных,, но пока неидентифицированным внеглазным фоторецепторам. Кратко рассмотрены также защитные функции пигментов, которые помогают живым организмам избегать вредного действия облучения УФ- и видимым светом. Хотя эти функции пигментов и не вызывают столь сильного интереса, как перечисленные выше, они чрезвычайно важны для выживания организмов. Наконец, некоторое внимание было уделено и биолюминесценции, с помощью которой живые организмы используют химическую-энергию для испускания света. [c.391]


Библиография для Фоторецепторы: [c.181]   
Смотреть страницы где упоминается термин Фоторецепторы: [c.70]    [c.12]    [c.320]    [c.320]    [c.321]    [c.324]    [c.362]    [c.375]    [c.376]    [c.379]    [c.393]   
Общая органическая химия Т.10 (1986) -- [ c.221 ]

Биология Том3 Изд3 (2004) -- [ c.272 , c.275 , c.326 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.156 , c.157 , c.158 , c.341 , c.342 , c.343 ]

Физиология растений (1989) -- [ c.18 , c.55 , c.110 , c.323 , c.393 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.156 , c.157 , c.158 , c.341 , c.342 , c.343 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.340 , c.341 , c.342 , c.343 , c.344 , c.345 , c.346 , c.347 , c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Натриевые каналы в фоторецепторах

Природа фоторецептора в фототропизме

Природа фоторецепторов

Терморецепторы, Фоторецепторы, Фазические рецепторы

Феромоны Фоторецепторы

Флавины как фоторецепторы

Фоторецептор клетка

Фоторецептор примитивных позвоночных

Фоторецепторы в синтезе антоцианов

Фоторецепторы для фототропизма

Фоторецепторы млекопитающих

Фоторецепторы фоторецепторные клетки также Колбочки, Палочки

Цветовое зрение опосредуется фоторецепторами трех типов



© 2025 chem21.info Реклама на сайте