Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пурпурные бактерии Пурпурные мембраны

    У всех фотосинтезирующих организмов, включая высшие растения, фотосинтез протекает в мембранных структурах. У пурпурных бактерий поглощающие свет пигменты (бактериальные хлорофиллы и каротины) встроены в мембраны, которые представляют собой складки наружной клеточной мембраны. Эти участки имеют характерную структуру и называются хроматофорами. Они состоят из соединяющихся между собой полых пузырьков, параллельно расположенных трубочек или параллельных пластинок (ламелл) диаметр всей структуры — 50—100 нм. У зеленых бактерий пигменты выстилают внутриклеточные пузырьки. В настоящее время фотосинтезирующие бактерии обитают только в серных источниках и глубоких озерах, но когда-то они были, вероятно, распространены гораздо более широко и являлись единственными фотосинтезирующими организмами на Земле. [c.25]


    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    Два компоненту фотосинтетического аппарата — реакционные центры и электронтранспортные системы — всегда локализованы в клеточных мембранах, представленных ЦПМ и у большинства фотосинтезирующих эубактерий развитой системой внутрицитоплазматических мембран — производных ЦПМ (см. рис. 4). Локализация светособирающих пигментов в разных группах фотосинтезирующих эубактерий различна (табл. 22). У пурпурных бактерий, гелиобактерий и прохлорофит светособирающие пигменты в виде комплексов с белками интегрированы в мембраны (рис. 72, А). В клетках зеленых бактерий и цианобактерий основная масса све-тособирающих пигментов находится в особых структурах, прикрепленных к поверхности мембраны, но не являющихся ее компонентом. Это хлоросомы зеленых бактерий и фикобилисомы цианобактерий (см. рис. 4). [c.274]

    Микроорганизмы при росте на i-соединениях меняют свои мембраны, особенно серьезно меняется место локализации ферментов и переносчиков электронов. Они становятся похожими на мембраны нитрифицирующих и пурпурных бактерий. Однако мембраны меняются и в зависимости от условий роста (аэрация, перемешивание, pH среды, температура и т.д.). [c.153]

    В отличие от мембран палочек и колбочек пурпурная мембрана бактерий являет-ся скорее кристаллической, Рис. 14.25. Цикл функционирования чем жидкой. Молекулы БР бактериородопсина сгруппированы в кластеры [c.478]

    Среди внутрицитоплазматических мембран вьщеляют несколько видов (табл. 4). Развитая система внутрицитоплазматических мембран характерна для большинства фотосинтезирующих эубактерий. Поскольку было показано, что в этих мембранах локализован фотосинтетический аппарат клетки, они получили общее название фотосинтетических мембран. Все фотосинтетические мембраны (как и все внутриклеточные) — производные ЦПМ, возникшие в результате ее разрастания и глубокого впячивания (инвагинации) в цитоплазму. У некоторых организмов (пурпурные бактерии) фотосинтетические мембраны сохранили тесную связь с ЦПМ, легко обнаруживаемую при электронно-микроскопическом изучении ультратонких срезов клетки. У цианобактерий эта связь менее очевидна. Одни авторы считают, что связь фотосинтетических мембран с ЦПМ у цианобактерий всегда существует, но трудно выявляется, поскольку редко попадает в плоскость среза препарата. По другому мнению, фотосинтетические мембраны цианобактерий — структуры, возникшие первоначально из ЦПМ, но впоследствии отделившиеся от нее и являющиеся в настоящее время автономными клеточными компонентами. [c.52]


    Для полной расшифровки механизма действия мембранного белка очень важно знать его первичную структуру и расположение его частей в мембране. Бактериородопсин был первым белком, генерирующим Д яН+, для которого были полностью установлены первичная структура и локализация его фрагментов в мембране. Этот белок расположен в специализированных областях цитоплазматической ме.мбраны пурпурных бактерий, в так называемых пурпурных бляшках. Кроме этого он обладает свойством образовывать в мембране Н. halobium тримеры, причем каждый тример окружен шестью другими так, что образуется правильная гексогональная решетка, и мембрана пурпурных бактерий может рассматриваться как естественный двумерный кристалл. Эти особенности бактериородопсина позволили Р. Хендерсону и П. Ануин в 1975 г. с помощью рентгеноструктурного анализа построить молекулярную модель белка, изображенную на рис. 44. Семь а-спиралей пересекают мембрану, образуя замкнутую группу колонн высотой около 3,5 нм (рис. 44). [c.122]

    Локализация пигментов. Фотосинтетические пигменты у пурпурных бактерий связаны с внутренними мембранами-везикулярными или трубчатыми выростами плазматической мембраны, которые сохраняют с ней связь, но проникают в толщу цитоплазмы. У разных видов бактерий такие мембраны имеют разную форму. Это могут быть трубочки, везикулы (пузырьки) или скопления ламелл (располагающихся концентрически или же в виде стопок) иногда они заполняют всю внутренность клетки (см. рис. 2.23). Фрагменты мембран, освобождаемые при разрушении клеток в виде везикул и отделяемые центрифугированием, называют хроматофорами . В клетках зеленых бактерий пигменты связаны с различными структурами светособирающие пигменты-главным образом с хлоросомами, а пигменты реакционных центров-с плазматической мембраной (см, рис. 2.4 и 12.9). [c.378]

    Среди внутрицитоплазматических мембран выделяют несколько видов (табл. 6). Развитая система внутрицитоплазматических мембран характерна для большинства фотосинтезирующих прокариот. Поскольку было показано, что в этих мембранах локализован фотосинтетиче-ский аппарат клетки, они получили общее название фотосинтетических мембран. Все фотосинтетические мембраны (как и все внутриклеточные) — производные ЦПМ, возникшие в результате ее разрастания и глубокого впячивания (инвагинации) в цитоплазму. У некоторых организмов (пурпурные бактерии) фотосинтетические мембраны сохранили тесную связь с ЦПМ, легко обнаруживаемую при электронномикроскопическом изучении ультратонких срезов клетки. У цианобак- [c.44]

    Единственной в своем роде мембраной является пурпурная мембрана бактерии На1оЬас1егшт ка1оЫит в ней содержится только один белок—бактериородопсин. Полная аминокислотная последовательность бактериородопсина не определена, однако установлена [27] последовательность аминокислот около места связывания фоторецептора (ретиналя) 01у-Уа1-5ег-Азр-Рго-Азр-Ьу8-Ьу5 -РЬе-Туг-А1а-Пе-Ме1 (звездочкой обозначено место связывания). [c.122]

    Некоторые галофильные бактерии способны использовать энергию света для образования АТР с помощью процесса, который не похож на фотосинтез у растений или бактерий. В частности, Н. halobium используют для образования АТР обычное аэробное дыхание, если имеется в достаточном количестве необходимый для этого кислород. В условиях же нехватки кислорода в клеточной мембране этих бактерий появляются специфические пурпурные образования, так называемые заплаты (pat hes). Пигмент, обусловливающий их пурпурную окраску, представляет собой белок бактериородопсин. Последний служит фоторецептором в процессе превращения энергии света в протонный градиент, который в свою очередь является движущей силой синтеза АТР с помощью хемиосмотического механизма. Фоточувствительная пурпурная мембрана состоит из липопротеинового матрикса, причем с помощью дифракции рентгеновских лучей показано, что молекулы бактериородопси-на расположены в этой мембране в виде жесткой двумерной решетки. [c.377]

    Наиболее четкое представление об ионном насосе было получено в ходе изучения пурпурной мембраны галофильных бактерий. Данный светозависимый протонный насос представляет собой часть мембранного комплекса, включающего рецепторы (в данном случае фоторецепторы), посредством которых внеклеточный сигнал (свет, источник энергии) превращается в внутриклеточ- [c.182]

    ЦПМ и сохранивших с ней отчетливо наблюдаемую связь. Мембраны имеют вид отдельных пузырьков, трубок или пластинок (ламелл), располагаюшихся по периферии клетки (см. рис. 4), и представляют вместе с ЦПМ единую систему. Подобно многим обитающим в толще воды эубактериям в клетках некоторых неподвижных пурпурных бактерий содержатся газовые вакуоли. В качестве запасных веществ обнаружены углевод типа гликогена и поли-Р-оксимасляная кислота. Группа пурпурных бактерий довольно гетерогенна в отношении нуклеотидного состава ДНК. Молярное содержание ГЦ-оснований колеблется от 45 до 73 %, хотя у большинства представителей оно находится в пределах 61 — 73 %. [c.298]

    При изучении мембранных белков необходимо принимать во внимание присущие им необычные свойства. Высокое сродство этих белков к липидам и гидрофобность приводят к практически полной их нерастворимости в водных средах. Пептидные фрагменты, полученные при гидролизе мембранных белкоа. также плохо растворимы и обладают повышенной склонностью к агрегаиии. Эти и некоторые другие сложности встретились при исследовании структуры бактериородопсина — основного белка пурпурной мембраны гало-фильной бактерии Haloba terium halobium. [c.79]


    Бактериородопсин- белок пурпурной мембраны. При благоприятных внешних условиях бактерия Haloba terium halobium, растущая в среде, содержащей высокие концентрации солей, синтезирует мембранный белок (мол. масса 26 000), известный под названием бактериородопсин. Молекулы этого белка, имеющего пурпурный цвет, обусловленный присутствием в них ретиналя, образуют в клеточной мембране агрегаты в виде пурпурных заплаток . Бактериородопсин действует как активируемый светом протонный насос и таким образом снабжает клетки энергией. Было показано, что этот белок состоит из семи параллельных а-спи- [c.186]

    У пурпурных бактерий и прохлорофит светсобирающие пигменты в виде комплексов с белками интегрированы в мембранах (рис. 76, А), В клетках зеленых бактерий и цианобактерий основная масса светсобирающих пигментов находится в особых структурах, прикрепленных к поверхности мембраны, но не являющихся ее компонентом. Это хлоросомы зеленых бактерий и фикобилисомы цианобактерий (см. рис. 4). [c.233]

    Пурпурные мембраны ПМ, локализованные в цитоплазме клеток некоторых экстремально галофильных бактерий, например На1оЬас1егтт ваНпапит, содержат единственный гидрофобный пигмент-белковый комплекс ПБК бактериородопсин (молекулярная масса 26 000), молекулы которого располагаются в ПМ строго упорядоченно. [c.389]

    Но если действительно движение бактерии зависит прямо от мембранного потенциала, то бактерии изобрели не только колесо, но и электромотор Такую идею стоило проверить. В лаборатории В. П. Скулачева на другом виде бактерий — на пурпурной бактерии А. Н. Глаголевым было показано, что скорость движения бактерий действительно зависит, как и предполагал Скулачев, не ох содержания АТФ в клетке, а от ее МП. В лаборатории был поставлен такой эффектный опыт. Бактерии были отравлены ядами, устраняющими потенциал, зависящий от ПОНОВ Н+. А затем в среду был добавлен еще один яд — валиномицин, который повышает проницаемость мембраны бактерий для ионов калия. Калий начинал выходить наружу, возникал МП. И дважды отравленные бактерии оживали и начинали плыть  [c.273]

    При электронно-микроскопическом исследовании разрешение может быть ограничено многими причинами, главными из которых являются степень упорядоченности кристаллов и способ их подготовки к микроскопированию. Обычно такие кристаллы легко разрушаются электронным пучком и их приходится заключать в тонкие пленки контрастирующего вещества. Подобная процедура увеличивает радиационную стабильность кристаллов, повышает контрастность изображений, но значительно ухудшает разрешение. Предельное разрешение в этих случаях определяется зернистостью контрастирующего вещества (или размером его кристаллов) и не превышает 15-20 А. В ряду объектов, исследованных методами трехмерной электронной микроскопии, следует выделить бактериородопсин. В галофильных бактериях этот белок, функционируюшдй как светозависимый "протонный насос", организован в так называемые пурпурные мембраны - участки клеточной мембраны, содержащие бактериородопсин в кристаллической упаковке. Другими словами, бактериородопсин функционирует в клетке в форме двухмерных кристаллов, которые могут быть выделены в высокочистом состоянии. [c.201]

    Первыми, кто выполнил электронно-микроскопическое определение структуры с высоким разрешением на непрокрашенных биологических образцах, были Ануин и Хендерсон. Стадии этого процесса иллюстрируются на рис. 14.14. Объектом исследования является пурпурная мембрана галофильной бактерии. Эта мембрана состоит из липида и преимущественно из одного белка. На рис. 14.14 показаны экспериментальная дифракционная картина, когда плоскость мембраны перпендикулярна пучку электронов (рис. 14.14И). и часть дифракционной картины, рассчитанной по электронно-микроскопическому изображению (рис. 14.14, Б, В). Кроме того, показана результирующая контурная карта проекции структуры на плоскость мембраны (рис. 14.14, Г). Разрешение, с которым получена эта карта, равно 7 А, хотя нет никаких серьезных препятствий к тому, чтобы улучшить его. Видны многочисленные интенсивные пики, отстоящие друг от друга на 10 А. По всей вероятности, это а-спирали белка, видимые с торцов. Следовательно, спирали должны быть ориентированы приблизительно перпендикулярно мембранной поверхности. [c.431]

    Мы знаем, что в целом белки экстремальных галофилов являются сильно кислыми. Это было показано для суммарных цитоплазматических белков нескольких экстремально галофильных бактерий, для белков оболочки других экстремальных галофилов и для рибосомных белков Я. utirubrum (табл. 8.5), Был также определен аминокислотный состав белка газовых вакуолей и белка пурпурной мембраны Я. halobium. Ни один из этих белков ие обнаруживает заметной зависимости от присутствия солей. Фактически выделение пурпурной мембраны основано на том, что она устойчива в условиях низкой ионной силы, когда распадается большинство других клеточных структур. Создается впечатление, что все белки галофильных бактерий, за исключением двух указанных выше, имеют значительно более высокую кислотность (измеряемую по разнице между числом кислых и основных аминокислот), чем соответствующие белки негалофиль-ных бактерий. [c.389]

    В гл. 5 уже упоминались пурпурные мембраны галофильных бактерий Я. ка1оЫит, которые позволяют этим бактериям выживать в анаэробных условиях. Пурпурный пигмент представляет собой один белок, бактериородопсин, в какой-то мере родственный зрительному пигменту, обнаруженному в дисках палочки сетчатки глаза млекопитающих. Этот белок имеет широкий максимум поглощения при 570 нм [5,26]. Поглощение света приводит к превращению формы, поглощающей при 570 нм, через ряд короткоживущих промежуточных форм в продукт, который поглощает максимально при 412 нм и возвращается путем обычной термической реакции к исходной форме с максимумом при 570 нм в течение нескольких миллисекунд. Все это явно сопровождается изменением конформации молекулы, причем частота конформационных переходов составляет около 100 Гц. При этом происходит выброс протонов во внешнюю среду и их захват из внутреннего пространства. Таким образом, в интактных клетках бактериородопсин действует как фотоиндуцированный протонный насос. В результате его работы бактерия может поддерживать необходимые ионные градиенты и фосфорилировать АДФ [11,38]. В силу относительной простоты системы есть все основания полагать, что этот протонный насос может оказаться первым примером механизма активного транспорта, который удастся расшифровать на молекулярном уровне. [c.337]

    Существуют три группы прокариот, способных катализи ровать фотосинтетический перенос электронов, — это зеленые бактерии, пурпурные бактерии и цианобактерии (или сине-зеленые водоросли). Пурпурные бактерии разделяют на две группы Rhodospirilla eae (или несерные) и hroniatia eae (или серные). Цианобактерии способны катализировать нециклический перенос электронов (разд. 6.4), используя в качестве донора электронов воду, и в этом отнощении они сходны с хлоропласта-ми. Из перечисленных выше групп организмов наиболее интенсивно изучается биоэнергетика пурпурных бактерий. Это происходит по двум причинам. Во-первых, механическое разрушение этих клеток (например, при продавливании суспензии под очень высоким давлением через узкое отверстие в ячейке пресса Френча) позволяет получить замкнутые пузырьки внутренней мембраны, которые называют хроматофорами (рис. 1.7). Хроматофоры сохраняют способность к фотосинтетическому сопряжению и имеют ту же ориентацию мембраны, что и субмитохондриальные частицы. Они служат наиболее удобным объектом для изучения цепи переноса электронов и хемиосмотического сопряжения. Второе преимущество пурпурных бактерий состоит в том, что из них могут быть выделены так называемые реакционные центры— первичные фотохимические комплексы (разд. 6.2). [c.17]

    На каждый РЦ может приходиться от 30 до 3000 молекул хлорофилла в антенне, поэтому исследование спектральных изменений в РЦ на фоне поглощения пигментов антенны сильно затруднено. Трудности удается преодолеть благодаря тому, что в выделенных и очищенных от антенн РЦ способны протекать первичные световые реакции. Активные РЦ были выделены Из хроматофоров различных пурпурных бактерий (Gingras, 1978). Для этого мембраны растворяли в детергенте, а затем использовали общепринятые методы очистки белков. [c.133]

    Считают, что комплекс b6f катализирует Q-цикл, подобный тому, который описан у пурпурных бактерий и митохондрий. Если это действительно так, то перенос одного электрона с PQ на цитохром f оказывается сопряженным с транслокацией одного заряда через мембрану тилакоида, поглощением двух Н+ из стромы и высвобождением двух Н+ во внутритилакоидное пространство. Поглощение протонов происходит на внешней поверхности мембраны тилакоида, их выделение — на внутренней. [c.68]

    Вывернутые субмитохондриальные частицы (разд. 12.3.1) при окислении сукцината или NADH выделяют протоны в свое внутреннее пространство. Если смоделированные пузырьки приготовлены таким образом, чтобы ориентация их мембраны соответствовала ориентации мембраны вывернутых субмитохондриальных частиц с АТРазой на наружной поверхности, то тогда внутри таких пузырьков происходит закисление, как, например, при встраивании функционирующего комплекса П1, это сопровождается синтезом АТР на наружной поверхности. Особенно впечатляющим оказался результат встраивания в смоделированные пузырьки полученного из пурпурной мембраны бактерии Haloba terium halobium бактериородопсина — соединения сходного с родопсином сетчатки (гл. 40). При освещении эта структура перекачивает протоны из среды внутрь пузырька. Когда включали в пузырьки АТРазу митохондрий печени таким образом, чтобы сферические головки были на наружной стороне пузырьков, при освещении наблюдался синтез АТР. [c.448]

    И. Пурпурная мембрана бактерии Haloba terium halobium-это особый участок плазматической мембраны, содержащий один белок - [c.51]

    Эволюция внутренних мембран, очевидно, шла параллельно со специализацией их функций У некоторых современных бактерий есть такие участки плазматической мембраны, на которых определенные мембранные белки собраны вместе для выполнения ряда взаимосвязанных функций (рис 8-3, А) В качестве примера можно привести пурпурные мембраны Haloba terium, содержащие бактериородопсин, и хроматофоры фотосинтезирующих бактерий И те и другие можно назвать примитивными органеллами У некоторых фотосинтезирующих бактерий эти участки преобразовались в глубокие впячивания плазматической мембраны (рис 8-3, Б), есть и такие, у которых эти впячивания полностью отшнуровались и превратились в замкнутые мембранные пузьфьки, предназначенные для фотосинтеза Внутренняя поверхность этих пузьфьков топологически эквивалентна внешней поверхности клетки (рис 8-3, В) [c.9]

    Как мы видели на примерах переносчиков кислорода и ферментов, описанных в предыдущих главах, рентгеноструктурный анализ является надежным методом изучения трехмерной структуры растворимых белков. Применим ли рентгеноструктурный анализ к мембранным белкам Трудность заключается в том, что до сих пор не удавалось получить интегральных белков мембраны в виде трехмерных кристаллов. Однако некоторые мембранные белки образуют правильную решетку в плоскости мембраны, т.е. двумерные кристаллы. Структурный анализ этих кристаллоидных форм удается осуществить с помощью электронной микроскопии в частности, такое исследование было с успехом проведено на пурпурной мембране НаЬЬасгепит /1а/оЬшт-бактерии, обитающей в соленой среде. Пурпурная мембрана-это специализированная область клеточной мембраны, содержащая бактериородопсин-белок массой 25 кДа, который превращает энергию света в трансмембранный протонный градиент, используемый для синтеза АТР (разд. 19.21). Были получены кристаллоиды в виде листка, или диска, диаметром до 1 мкм. Благодаря тому что в каждом из них содержалось около 20 ООО молекул бактериородопсина, можно было получить изображение, используя очень слабый пучок электронов и тем самым сводя к минимуму радиационные повреждения. Кроме того, для получения изображения с высокой степенью разрешения можно было брать неокрашенные препараты. Одно электронно-микроскопическое изображение кристаллоидного листка пур- [c.221]

    Предприняты попытки встраивания молекул пигмента в искусственные системы и повыщения эффективности их использования. В частности, растущие бактерии Н. каЬЫит переносят в мелкие водоемы с высокой концентрацией КаС1 и других минеральных солей, в которых исключается загрязнение. У некоторых щтаммов половина клеточной мембраны покрыта пурпурным пигментом, и из 10 л бактериальной культуры можно получить 0,5 г пурпурных мембран. В таких биомембранах содержится до 100000 молекул родопсина. Биомембраны фиксируют на особой подложке, которая должна обладать всеми свойствами, необходимыми для обеспечения тока протонов, а не других ионов. В частности, для этих целей вполне пригодны пористые подложки, пропитанные липидами, которые, сливаясь с мембраной, сплощным слоем покрывают поверхность фильтра. Мембранные фрагменты можно смещивать и с акриламидом с образованием геля. Вместо создания плотных слоев молекул бактериородопсин и липиды могут создавать протеолипосомы, которые встраивают в структуры, обеспечивающие эффективное перекачивание протонов. [c.27]


Смотреть страницы где упоминается термин Пурпурные бактерии Пурпурные мембраны: [c.68]    [c.181]    [c.275]    [c.48]    [c.49]    [c.375]    [c.34]    [c.370]    [c.370]    [c.9]    [c.149]    [c.149]    [c.222]    [c.402]    [c.413]    [c.107]    [c.355]    [c.370]   
Микробиология (2006) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Психрофилы, денатурация рибосом Пурпурная мембрана галофильных бактерий



© 2024 chem21.info Реклама на сайте