Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы на основе тантала

    Изготовление сплавов тантала — трудная техническая задача. К моменту начала этой работы (1974 г.) технология получения сплавов на основе тантала еще не бьша разработана, а имеющееся в распоряжении исследователей оборудование для этих целей не приспособлено. [c.12]

    Легирование этих материалов улучшает их высоко- и низкотемпературные свойства, например ковкость. В литературе отмечается [29], что сплавы молибдена и ниобия наиболее перспективны для конструкционных целей при температурах до 1400° С при более высоких температурах, очевидно, целесообразнее применять сплавы на основе тантала и вольфрама. Единственным стойким к окислению жароупорным металлом является хром, хотя гафний также обладает удовлетворительной стойкостью к окислению. Остальные металлы при температуре выше 600° С окисляются. Правда, стойкость к окислению ниобия, тантала и вольфрама можно значительно повысить легирующими добавками. При использовании других материалов можно применять защитные облицовки. [c.314]


    Если при легировании ванадия стремятся повысить его коррозионную стойкость, то при разработке сплавов на основе тантала ставят другую задачу — создание более дешевых сплавов за счет замены части тантала более доступным компонентом, следя за тем, чтобы снижение коррозионных свойств было минимальным по сравнению с чистым танталом. [c.305]

    Константы решетки сплавов тантал — водород до 43 ат. % Н (ТаНо,75) при 300° были измерены Сталинским [358], установившим двухфазную область между фазой на основе тантала и орторомбической фазой в интервале ТаНо,зт—ТаНо,4 (27-32 ат, % Н). [c.106]

    Ниобий и сплавы на его основе, тантал, ванадий [c.181]

    При широком применении радиотехнических устройств в современной промышленности требуется огромное количество сравнительно недорогих, надежных в эксплуатации и к тому же малогабаритных электролитических конденсаторов. Хотя создано производство конденсаторов на основе других металлов (как, например, на основе тантала и ниобия), спрос на алюминиевые электролитические конденсаторы не только не сокращается, но и увеличивается быстрыми темпами. Эта обусловлено тем, что искусственные окисные пленки, полученные на алюминии электрохимическим путем, хорошо защищают алюминий и его сплавы от коррозии. При определенных условиях на алюминии можно получить пленки с большой твердостью и высоким сопротивлением механическому износу можно также получить окисные пленки с высокими изоляционными свойствами. Изоляционные свойства пленок представляют интерес в связи с применением анодированного алюминия в качестве проводников тока. [c.78]

    Сплавы на основе тантала. [c.214]

    Большой интерес представляют сплавы на основе карбидов, нитридов, боридов и силицидов ниобия и тантала, отличающиеся исключительной твердостью, химической инертностью и жаростойкостью. [c.542]

    Карбид вольфрама С обладает очень высокой твердостью (близкой к твердости алмаза), износоустойчивостью и тугоплавкостью. На основе этого вещества созданы самые производительные инструментальные твердые сплавы. В их состав входит 85— 95% УС и 5—15% кобальта, придающего сплаву необходимую прочность. Некоторые сорта таких сплавов содержат, кроме карбида вольфрама, карбиды титана, тантала и ниобия. Все эти сплавы получают методами порошковой металлургии и применяют главным образом для изготовления рабочих частей режущих и буровых инструментов. ...........  [c.661]

    Значительно чаще применяют металлические сплавы на основе железа (сталь и чугун), алюминия, магния, меди (бронза и латунь), никеля, ниобия, титана, тантала, циркония и других металлов. [c.175]


    Металлические карбиды входят в состав чугунов и сталей, придавая им твердость, износоустойчивость и другие ценные качества. На основе карбидов вольфрама, титана и тантала производят сверхтвердые и тугоплавкие сплавы, применяемые для скоростной обработки металлов. Такие сплавы изготовляют методами порошковой металлургии (спрессовыванием составных частей при нагревании) в качестве цементирующего материала чаще всего используют кобальт и никель. Сплав, состоящий из 20% Hf и 80% ТаС, является самым тугоплавким известным веществом (т. пл. 4000°С). [c.453]

    Карбид вольфрама W обладает очень высокой твердостью (близкой к твердости алмаза), износоустойчивостью и тугоплавкостью. На основе этого вещества созданы самые производительные инструментальные твердые сплавы. В их состав входит 85—95% W и 5—15% кобальта, придающего сплаву необходимую прочность. Некоторые сорта таких сплавов содержат кроме карбида вольфрама карбиды титана, тантала и ниобия. Все эти сплавы получают методами порошковой металлургии и применяют главным образом для изготовления рабочих частей режущих и буровых инструментов насадки резцов, сверл, фрез для обработки высокоуглеродистых и нержавеющих сталей. Однако при высоких температурах карбид состава W разлагается с образованием другого, но менее твердого карбида вольфрама  [c.517]

    Карбиды вольфрама, титана, тантала служат основой для выработки сверхтвердых и тугоплавких сплавов путем спрессовывания мелкоизмельченных компонентов при нагревании (при этом роль связывающего материала обычно играют кобальт или никель). Такой метод получения мелкозернистых сплавов является основой порошковой металлургии. [c.369]

    Продолжающееся повышение требований к чистоте металлов и расширение производства таких тугоплавких металлов, как ниобий, тантал, молибден, вольфрам, и др., и сплавов на их основе показали, что вакуумные дуговые и электро-шлаковые печи не могут полностью удовлетворить эти потребности, в основном из-за того, что в них нельзя получить существенный перегрев металла жидкой ванны над температурой плавления и выдержать ванну при этой температуре в течение времени, нужного для глубокой очистки металла от примесей и газов. Кроме того, особенности рабочего процесса вакуумной дуговой печи не позволяют полностью использовать обычные средства металлургии, такие, как легирование, применение раскисли-телей, флюсов и т. п. Поэтому последние 10—15 лет во всех крупных промышленных странах ведутся работы по созданию плавильных агрегатов, свободных от указанных недостатков. Одним из таких новых типов плавильных установок являются электронные печи. [c.234]

    Сплавы на основе карбидов, нитридов, боридов и силицидов ниобия и тантала, отличаются твердостью, химической инертностью и жаростойкостью. [c.590]

    Сплавы на основе тантала. Известно, что тантал является наиболее пассивирующимся и коррозионностойким металлом. Поэтому повышение его коррозионной стойкости легированием другими пассивирующимися металлами мало вероятно. Кислотостойкость сплавов тантала в лучшем слу- [c.306]

    Повыщен ная коррозионная стойкость больщинства технических конструкционных сплавов определяется большой легкостью установле ния и высокой степенью устойчивости их пассивного- состояния. Такова природа коррозионной стойкости разнообразных нержавеющих сталей, титановых сплавов, циркония, тантала, ниобия, алюминия и ряда других металлов и сплавов на их основе. Понятен поэтому большой интерес к изучению пассивности и изысканию способов повышения устойчивости пассивного состояния сплавов. [c.40]

    Последующее развитие этих работ, вызванное главным образом потребностя1ми авиации и ракетной техники, привело к созданию сплавов на основе металлов так называемой больщой четверки — ниобия, тантала, молибдена и вольфрама, обладающих длительной прочностью 10—15 кГ/ммР-, при температуре 1200° С и выше [2, 3]. (см. рис. 1). Следует иметь в виду, что использование сплавов на основе тантала и вольфрама ограничено их высоким удельным весом. Поэтому применение танталовых сплавов наиболее целесообразно при температурах 1400—1600° С, а вольфрамовых — выше 1700° С [3]. [c.213]

    При закалке и отпуске закаленных сплавов циркония, легированных такими элементами, как ниобий, хром, молибден, рений, ванадий и другие, возникает метастабильная ш-фаза. Образование ш-фазы оказывает большое влияние на свойства сплавов, которое выражается в повышении твердости и снижении пластичности. Л. А. Петровой [1] исследована стабилизация -твердого раствора в сплавах циркония с 9 и 10 вес.% ванадия после закалок с 900—1150° методами рентгеновского и металлографического анализов. Исследования показали, что в сплавах наряду с линиями -фазы присутствуют еще линии со-фазы, следовательно, в сплавах циркония с ванадием невозможно получить метастабильную -фазу закалкой. Относительно тантала в литературе имеются разноречивые данные. В. Е. Емельянов и др. [2] сообщают, что рентгеновский фазовый анализ показал в системе цирконий — тантал наличие только двух фаз а-циркония и твердого раствора на основе тантала, стабилизировать -фазу циркония при комнатной температуре не удается >. Однако Д. Е. Вильямс и др. [3] при обсуждении результатов исследования диаграммы состояния цирконий — тантал приводят значения параметров решетки для твердых растворов на основе -цирконня и тантала в сплавах, закаленных с температур 1300 и 1500°. Ни в одной из описанных работ нет указаний на наличие метастабильной -фазы в сплавах циркония с танталом. Вследствие того, что малолегированные сплавы циркония с танталом и ванадием могут быть использованы в качестве конструкционных материалов, а о-фаза оказывает резко неблагоприятное влияние на пластические свойства сплавов, нам представилось интересным изучить появление ю-фазы как в двойных, так и в тройных сплавах циркония с танталом и ванадием, а также выяснить возможность сохранения закалкой в этих сплавах -твердых растворов. [c.98]


    С целью создания коррозионностойких и механически прочных сплавов на основе тантала были изучены различныд системы. Из литературных данных э известно, что тантал с тита-ном , молибденом, вольфрамом и ниобием образует непрерывный ряд твердых растворов различия в размерах атомов перечисленных элементов и тантала не превышают 5%. [c.147]

    Наиболее перспективными сплавами для работы в интервале 1000—1400° С являются, по-видимому, сплавы на основе молибдена и ниобия, а для работы при более высоких температурах — сплавы тантала и вольфрама. При температурах выше 600" С тугоплавкие металлы, за исключением хрома и некоторых металлов платиновой группы, интенсивно окисляются (рис. 77) и охруп-чиваются растворяющимся кислородом. [c.117]

    Рассмотрены механические свойства коррозионноетойких бине ных танталовых сплавов. Проведена оценка жаропрочвнх свойств тантала и сплавов на его основе при глубоком легирования тани влемента 1У-У1 групп периодической системы. [c.183]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Б. Опеределение циркония в сплавах на основе ниобия и тантала [c.225]

    Для элементов УБ группы характерны тугоплавкость, устойчивость по отношению к воздуху и воде, а ниобий, тантал и сплавы на их основе устойчивы и в агрессивных средах. Высоко тугоплавки и коррозионностойки их нитриды, карбиды, бориды. Гидратированные оксиды этих элементов имеют неопределенный состав /МгОб-хНгО. Для оксоанионов в кислых растворах характерна полимеризация. Высшие галогениды и оксогалогениды ванадия и ниобия гидролизуются нацело. Ванадий в степени окисления + 5 в кислой среде проявляет окислительные свойства. Для элементов этой подгруппы, как и для подгруппы хрома, характерно образование пероксокомплексов. [c.523]

    По ГОСТу наличие ванадия в марках сталей обозначают буквой Ф. Например, сталь 60СГХФА — пружинная сталь, содержащая 0,6% С, до 1% 51, Мп, Сг и V. Буква А означает улучшенную сталь. Ниобий и тантал нашли применение позднее, когда появилась потребность в нержавеющих и жаропрочных сталях. Так, например, нержавеющая сталь Х18Н10НБ содержит 18% Сг, 10% N1 и до 1% ЫЬ (последний в сплавах черной металлургии обозначается НБ). В настоящее время разработаны высокопрочные при высоких температурах сплавы на основе ЫЬ с молибденом, цирконием в качестве легирующих компонентов. Однако эти сплавы очень дороги. [c.335]

    Перспективно применение НГ и его соединений в жаропрочных сплавах для самолетостроения и ракетной техники. Сплавы титана, легированные гафнием (до нескольких процентов), выдерживают нагревание до 980 . Сплавы тантала с гафнием устойчивы против окисления до 1650°. Сплавы МЬ и Та с НГ (2—10%) и У (8—10%) хорошо обрабатываются, коррозионно стойки, высокопрочны выше 2000° и вблизи абсолютного нуля. Уникальные свойства имеют жаропрочные материалы на основе карбида и нитрида гафния. Твердый раствор карбидов НГ и Та, плавящийся выше 4000°, — самый тугоплавкий керами ческий материал. Йз него готовят тигли для выплавки тугоплавких металлов и детали реактивных двигaтeлeiV 15, 16, 72, 731. [c.309]

    В пленочных и полупроводниковых микросхемах широко используются различные металлы и сплавы, у которых стабильность электрических характеристик сочетается со стойкостью их к химической и электрохимической коррозии. Для проводников и контактов используются металлы с высокой электрической проводимостью золото, серебро, медь и алюминий, причем последний чаще всего для внутрисхемных соединений. В качестве материалов для резистивных пленок преимущественное применение нашли тантал, нихром, хромосилицидные и другие сплавы на основе хрома и тантала. Одни из названных металлов являются коррозионно-стойкими вследствие их высоких окислительно-восстановительных потенциалов (Аи, Ад), другие — из-за самопроизвольного образования пассивирующих оксидных пленок на их поверхности (А1, N1, Сг, Та). Однако при контакте резисторов из этих металлов и алюминия невозможно избежать образования гальванопар Сг—А], Ы —А1 и др., которые чрезвычайно чувствительны к любого рода загрязнениям. Этими загрязнениями могут оказаться остаточная влага, следы кислорода и некоторые химические вещества, выделяющиеся из стенок корпуса и защитного покрытия при технологических операциях герметизации и защиты микросхем. В результате электрохимической коррозии алюминий в месте контакта разрушается, что в итоге приводит к разрыву электрической цепи. [c.281]

    Легкопассивируютцийся металл - тантал, однако получение объемнолегированного танталом сплава на основе железа невозможно из-за нич- [c.74]

    Рекомендации по легированию, которые приведены ниже, разработаны исходя из требования, что скорость коррозии сплава не должна превышать 0,1 мм/год, т.е. соответствовать 1 баллу коррозионной стойкости. Сплавы указанных составов предназначены для работы в кипящей кислоте эксплуатация сплавов при более низкой температуре обеспечивает дополнительный запас надежности. Выбор той или иной основы сплавов тугоплавких металлов и степени их легирования вследствие сзоцественно различающейся стойкости этих металлов во многих случаях приобретает решающее значеш1е. Конкретную стоимость юго или иного металла указать трудно, так как она непостоянна и зависит от многих обстоятельств технологического и конъюнктурного плана. В данном случае достаточно привести примерное соотношение стоимости тугоплавких металлов. Оно следующее Nb в 2 раза дешевле Та, W и Мо — в 10 раз, V — в 5 раз, Ti — в 100 раз. Однако необходимо учитьшать также и плотность тугоплавких металлов (см. табл. 1). Все указанные тугоплавкие металлы, кроме W, легче, чем Та. Весьма округленно плотность относительно тантала равна —4 для Ti, —3 для V, —2 для Nb, —1,5 для Мо, 1 для W. Следовательно, при изготовлении изделия (детали) не из тантала, а из титана его стоимость будет меньше в 400 раз, из ванадия — в 15 раз, из ниобия — в 4 раза, из молибдена — в 15 раз, из вольфрама - в 10 раз. [c.81]


Смотреть страницы где упоминается термин Сплавы на основе тантала: [c.162]    [c.77]    [c.9]    [c.495]    [c.215]    [c.177]    [c.280]    [c.148]    [c.534]    [c.231]    [c.432]   
Смотреть главы в:

Новые конструкционные химически стойкие металлические материалы -> Сплавы на основе тантала




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте