Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмульсии самопроизвольное образование

    Далее необходимо кратко остановиться на явлении так называемого самопроизвольного образования эмульсий. Ниже кратко рассмотрен механизм этого процесса по взглядам А. Жуховицкого [10], а также описано явление самопроизвольного образования эмульсий битума в воде, изученные А. Бернштейном [И]. [c.17]

    Чем меньше поверхностное натяжение на границе двух разнополярных жидкостей, тем более устойчивая эмульсия может быть из них приготовлена. Когда поверхностное натяжения уменьшается до значений 0.1 эрг/с.м , то возможно самопроизвольное образование эмульсии под действием только теплового движения. [c.70]


    Образование эмульсии (самопроизвольное). Предварительно приготавливают раствор следующего состава 3 см касторового масла, 25 см 95% этилового спирта, 0,1 г олеата натрия, 0,1 г камфоры. [c.321]

    В заключение рассмотрим интересное явление, относящееся к получению эмульсий,— самопроизвольное эмульгирование. Оно заключается в том, что эмульсия двух соприкасающихся жидкостей образуется без внешнего перемешивания. Более того, легкое масло может эмульгироваться в воде, плотность которой выше, и наоборот. Самопроизвольное эмульгирование наблюдается, когда межфазное натяжение на границе вода — масло снижено введением эмульгатора до очень малой величины. Существует несколько объяснений этого явления. По одному из них эмульгирование вызывается химической реакцией на границе раздела фаз. Этим, в частности, объясняется образование эмульсий при наслаивании на водный раствор щелочи масляного [c.180]

    Образующиеся мицеллярные эмульсии изотропны, оптически прозрачны (размер частиц 10—60 нм) и термодинамически стабильны. Самопроизвольное образование этих систем (ДО < 0) связывают [12,32] либо с наличием отрицательного межфазного натяжения (обусловленного высоким давлением в пленке, образованной смесью ПАВ + добавка, на границе раздела масло — вода), либо с вкладами энтропийной составляющей, а также энергии отталкивания ДЭС. В то [c.328]

    При введении ОП-10 в воду происходит интенсивное самопроизвольное образование агрегативно устойчивой прямой эмульсии ксилола в воде. Капельки ее, постепенно концентрируясь у границы раздела, образуют механически прочную структурированную пленку значительной толщины. При введении же эмульгатора в кси- [c.269]

    Эмульсии. Микрогетерогенная система, состоящая из жидкой дисперсионной среды и жидкой дисперсной фазы, называется эмульсией. Различают два типа эмульсий 1) эмульсия масла в воде (м/в) и 2) эмульсия воды в масле (в/м). Причем под маслом понимается любая практически не растворимая или ограниченно растворимая в воде органическая жидкость. Одной из характерных особенностей эмульсий является возможность самопроизвольного образования их при условиях, когда межфазное натяжение становится незначительным — порядка 10 дж-м . [c.353]

    Не всегда эмульгатор снижает межфазное натяжение до такого значения, при котором возможно самопроизвольное образование эмульсии. Поэтому в большинстве случаев эмульсии получают ультразвуковым дроблением одной жидкости в другой в присутствии нужного эмульгатора, природа которого определяет тип и свойства эмульсии. Например, при дроблении одной жидкости в другой в присутствии мыла щелочного металла (эмульгатора) образуется эмульсия типа м/в, а в присутствии мыла многовалентного металла (эмульгатора) — эмульсия типа в/м  [c.353]


    В этой возможности самопроизвольного образования термодинамически устойчивых равновесных систем, при условии очень низких значений поверхностного натяжения, заключается одна из характерных особенностей эмульсий, отсутствующая у всех других коллоидных систем, не относящихся к растворам высокомолекулярных соединений. [c.139]

    В термодинамически устойчивых системах энергия теплового движения достаточна для отрыва капелек, что приводит к самопроизвольному образованию эмульсии. Это возможно при очень низком межфазном натяжении (практически равном нулю), значение которого определяется соотношением кинетической энергии теплового движения i 7 и свободной энергии поверхности [38] [c.148]

    Сходное явление недавно наблюдали Липатов с сотр. [8]. Самопроизвольное образование эмульсии одного полимера в другом они объяснили действием локальных напряжений и реологическими факторами. [c.69]

    Мало изучены коллоидно-химические процессы образования эмульсий в многокомпонентных нефтяных системах с ограниченно растворяющимися компонентами. При исследовапии модельных бинарных систем обнаружено, что самопроизвольно образующиеся обратимые эмульсии существуют в определенном интервале концентраций и температур, вне которого они разрушаются с образованием двух макрофаз или являются гомогенной системой [138]. Дистиллятное нефтяное сырье, подвергаемое очистке селективными растворителями, в предкритической области следует рассматривать как жидкостную эмульсию, нарушение агрегативной устой" чивости —разделение на рафинатный и экстрактный растворы— происходит при критической температуре. [c.34]

    Как дисперсную систему — жидкостную эмульсию — следует рассматривать в предкритической области дистиллятное нефтяное сырье, подвергаемое очистке селективными растворителями. При критической температуре происходит нарушение агрегатной устойчивости системы и разделение ее на рафинатный и экстрактный растворы. Большое значение приобретают исследования коллоидно-химических процессов образования эмульсий в многокомпонентных нефтяных системах с ограниченно растворяющимися компонентами. В модельных бинарных системах самопроизвольно образуются обратимые эмульсии, существующие в определенном интервале концентраций и температур, вне которого они разрушаются с образованием двух макрофаз или являются гомогенной системой [9]. [c.34]

    В работах А. Б. Таубмана и С. А. Никитиной с сотрудниками показано, что возникновение структурно-механического барьера связано с самопроизвольным образованием ультрамикроэмульсии (УМЭ) на границе раздела двух жидких фаз. Возникновение УМЭ можно легко наблюдать, если наслоить углеводород (масляная фаза) на водный раствор эмульгатора. Спустя некоторое время на границе раздела фаз появляется тонкая молочно-белая прослойка, постепенно утолщающаяся в сторону водной фазы. Это явление — следствие гидродинамической неустойчивости межфазной поверхности углеводород—раствор ПАВ, обусловленной I двусторонним массопереносом через границу раздела (переход в водную фазу вследствие внутримицеллярного растворения, перераспределение эмульгатора между фазами благодаря некоторой растворимости его в углеводороде). В результате возникающей поверхностной турбулентности в обеих фазах вблизи поверхности раздела спонтанно развивается процесс эмульгирования с образованием капелек эмульсии как прямого типа (в водной фазе), так и обратного (в углеводороде). Однако обратная эмульсия, как правило, грубодисперсна, малоустойчива и легко разрушается, тогда как прямая имеет коллоидную степень дисперсности (размер капелек соизмерим с размером мицелл, солюбилизировавших углеводород) и обладает высокой агрегативной устойчивостью. Ультрамикрокапельки ее защищены адсорбционными слоями эмульгатора, которые связывают их в сплошную гелеобразную структуру с заметно выраженной прочностью и другими структурно-механическими свойствами. [c.194]

    В заключение необходимо упомянуть о коллоидных системах, возникающих самопроизвольно (спонтанно), хотя, казалось бы, это противоречит тому, что при образовании коллоидных систем увеличивается межфазная поверхность, а значит, и свободная энергия системы. Такие системы, имеющие вследствие больших размеров частиц безусловно коллоидную природу, обнаружены и исследованы в Советском Союзе П. А. Ребиндером и его школой и в настоящее время привлекают пристальное внимание, физико-химиков, работающих в области коллоидной химии. Сюда следует отнести критические эмульсии, возникающие спонтанно при температурах, близких к критической, эмульсии, представляющие собой углеводороды с большим содержанием эмульгатора, некоторые неорганические дисперсные системы и т. д. [c.15]

    Если а постоянно, то самопроизвольно происходят процессы в направлении уменьшения суммарной поверхности (5), приводяш,ие к уменьшению дисперсности, т. е. к укрупнению частиц. Поэтому происходит слияние мелких капель в туманах, дождевых облаках и эмульсиях, агрегация высокодисперсных частиц в более крупные образования. Все это приводит к разрушению дисперсных систем туманы и дождевые облака проливаются дождем, эмульсии расслаиваются, коллоидные растворы коагулируют, т. е. разделяются на осадок дисперсной фазы (коагулят, рис. 10.3, б, в) и дисперсионную среду, или, в случае вытянутых частиц дисперсной фазы, превращаются в гель (рис. 10.3, а). [c.293]


    Самопроизвольное образование оксидных разделительных слоев происходит на формах из титана, никеля, рения, нержавеющей стали, хромоникелевых сплавов, сплавов алюминия. В качестве разделительных слоев применяют дисульфид вольфрама, тонкие пленки из силиконового масла, масляной эмульсии, спиртовой раствор нигрозина, раствор яичного альбумина. Для образования устойчивого оксидного слоя на нержавеющей стали или никеле эти материалы обрабатывают 1—2%-ным раствором бихромата калия (К2СГ2О7). [c.341]

    Устойчивые высокодисперсные, концентрированные эмульсии получают понижением пограничного натяжения почти до нуля, что ведет к образованию самопроизвольных или, как их иногда называют, критических эмульсий. Получающиеся эмульсии относятся к классу лиофильных коллоидных систем и являются равновесными, термодинамически устойчивыми. Происходящее в процессе самопроизвольного диспергирования некоторое возрастание поверхностной энергии компенсируется увеличением энтропии системы в связи с более равномерным распределением в ней вещества дисперсной фазы. [c.160]

    Установлено, что стабилизации микрогетерогеиных эмульсий способствует самопроизвольное образование ультрамикрогетерогенных эмульсий (микроэмульсий) вокруг частиц. Микроэмульсии (размер частиц 10—100 нм) образуются вследствие турбулентности в приповерхностных слоях частиц основной эмульсии. Слон капелек микроэмульснй выступают в роли структурно-механического барьера, замедляющего коагуляцию основной эмульсии. [c.348]

    Эмульсии, как и все коллоидные и микрогетерогенные системы, агрегативно неустойчивы из-за избытка свободной яне.пгии на межфазной поверхности. Агрегативная неустойчивость эмульсий проявляется в самопроизвольном образовании агрегатов капелек с последующим слиянием (коалесценцией) отдельных капелек друг с другом. В пределе это может приводить к полному разрушению эмульсии и разделению ее на два слоя, из которых один соответствует жидкости, образующей в эмульсии дисперсную фазу, а другой — жидкости, являющейся дисперсионной средой. [c.371]

    Для дисперсной системы с жидкой поверхностью раздела, состоящей из множества капель или пузырьков (эмульсий или пены), самопроизвольные процессы сводятся к коалесценции — слиянию капель отвечающему Smin при V = onst, или к коагуляции. Частички твердых тел не способны к коалесценции из-за высокой вязкости или наличия кристаллической решетки, с узлами которой связаны структурные элементы тела. Кристаллическая решетка налагает условие ограничения тела плоскостями, поэтому частичка может быть только полиэдрической формы. Процессы собирательной рекристаллизации самопроизвольного образования крупных кристаллов из мелких — ускоряются при нагревании. [c.35]

    Самопроизвольное образование эмульсий обычно происходит вблизи такой температуры, при которой две ие-смешивающиеся жидкости становятся полностью взаимно растворимыми (критическая температура растворения). Самопроизвольно может образовываться эмульсия и при введении ПАВ, снижающих поверхностное натяжение на границе соприкооновения фаз почти до нуля. Самопроизвольно образующаяся эмульсия — система термодинамически устойчивая. К таким эмульсиям можно отнести эмульсии в воде (или водно-спиртовых смесях) некоторых масел. Подобные эмульсии, называемые эмульсолами, находят применение в качестве смазочноохлаждающих жидкостей. [c.256]

    Образующиеся мицеллярные эмульсии изотропны, оптически прозрачны (размер частиц 10—60 нм) и термодинамически стабильны. Самопроизвольное образование этих систем (ДО < 0) связывают [10, 29] либо с наличием отрицательного межфазного натяжения (обусловленного высоким давлением в пленке, образованной смесью ПАВ 4- добавка, на границе раздела масло — вода), либо с вкладами энтропийной составляющей, а также энергии отталкивания ДЭС. В то время как обычные эмульсии — термодинамически неустойчивые системы, кинетическая стабильность которых определяется силами отталкивания ДЭС на поверхности глобул и вандерваальсовыми силами притяжения (в соответствии с теорией ДЛФО), термодинамическая устойчивость мицеллярных эмульсий определяется свободной энергией образования двойного слоя, энтропийным эффектом (для < 20 нм) и силами отталкивания ДЭС вандерваальсовы силы притяжения играют второстепенную роль. Мицеллярные эмульсии можно рассматривать как набухшие мицеллы. [c.362]

    В некоторых случаях, приближающихся к условиям образования лиофильных коллоидных систем, может происходить и самопроизвольное образование эмульсий ( самоэмульгирование жидкостей ). Это возможно, например, ес,ли на границе двух жидких фаз при взаимодействии двух веществ, каждое из которых растворимо в одной из соприкасающихся фаз, образуется сильно поверхностно-активное соединение. Протекающая в таких, существенно неравновесных условиях адсорбция образующегося вещества способна приводить, как было показано А. А. Жуховицким, к резкому снижению поверхностного натяжения и самопроизвольному диспергированию (см. 2 гл. VUI). После завершения химической реакции образования на межфазной поверхности заметных количеств поверхностно-активного вещества его адсорбция по мере приближения к равновесным условиям падает, и поверхностное натяжение может снова возрасти выше критического значения Ос. Близкое по природе самопроизвольное эмульгирование, лежащее в основе эффективного способа получения устойчивых эмульсий, может осуществляться при использовании ПАВ, растворимого в обеих контактирующих жидкостях и в дисперсной фазе, и в дисперсионной среде. Если раствор такого ПАВ в веществе дисперсной фазы интенсивно перемешивать с чистой днсперсиоииой средой, то происходит перепое ПАВ через межфазную поверхность, имеющую малое поверхностное натяжение (рис. X—12) это вызывает турбулизацию поверхности и приводит к возникновению наряду с более крупными каплями эмульсии большого числа очень малых капелек микроэмульсии, оказывающих стабилизирующее действие на систему. [c.285]

    Эффективность процесса эмульгирования, которая определяет и устойчивость полученной эмульсии, зависит в основном от характера и интенсивности механического воздействия и от способа введения эмульгатора в эмульгируемую систему. Механическое воздействие вызывает диспергирование внутренней фазы на отдельные небольшие глобулы, так что чем ниже поверхностное натяжение на границе эмульгируемых фаз, тем меньше затрачивается работы на этот процесс. Действие коллоидных мельниц и гомогенизаторов разных типов сводится к созданию в жидкой среде наибольших сдвиговых усилий, облегчающих образование мелких однородных глобул. В системах с очень низким значением междуфазного поверхностного натяжения эмульгирование может происходить самопроизвольно без воздействия извне. В этом случае смешение фаз происходит благодаря конвекционным токам, вызываемым диффузией и небольшими местными разностями температур. Так, раствор пальмитиновой кислоты в парафиновом масле высокой степени очистки, будучи влит в водный раствор едкого натра, образует эмульсию самопроизвольно. На поверхности раздела фаз мыло, действующее как эмульгатор, образуется in situ и благодаря теплоте реакции и диффузии фазы смешиваются, образуя эмульсию [57]. Но при вливании парафинового масла в водный раствор пальмитата натрия самопроизвольного эмульгирования не происходит. Среди систем с очень низким междуфазным натяжением отмечено много других аналогичных примеров самопроизвольного эмульгирования [58]. Однако в большинстве случаев для образования эмульсий требуется механическое диспергирование, которое может быть осуществлено разными способами, от перемешивания вручную до использования сложных механических приспособлений. Один из наиболее эффективных методов образования змульсий заключается в одновременном пропускании обеих жидкостей [c.342]

    В некоторых случаях, приближающихся к условиям образования лиофильных коллоидных систем, может происходить и самопроизвольное образование эмульсий (самоэмульгирование жидкостей). Это возможно, например, если на границе двух жидких фаз при взаимодействии двух веществ, каждое из которых растворимо в одной из соприкасающихся фаз, образуется сильно поверхностно-активное соединение. Протекающая в таких существенно неравновесных условиях адсорбция образующегося вещества способна приводить, как было показано А. А. Жуховицким, к резкому снижению поверхностного натяжения и самопроизвольному диспергированию (см, гл. VII, 2). После завершения химической реакции образования на межфазной поверхности заметных количеств ПАВ его адсорбция по мере приближения к равновесным условиям падае , и поверхностное натяжение может снова возрасти вьппе критического значения Близкое по [c.344]

    Твердьпии Т.п. являются оксидные пленки иа пов-сти металлов и искусственные пленочные покрытия, формируемые на разл. материалах с целью создания приборов микроэлектроники, предотвращения коррозии, улучшения внеш. вида и т, п. Жидкие Т. п. разделяют газообразную дисперсную фазу в пенах и жидкие фазы в эмульси.чх образование устойчивых пен и эмульсий возможно только при наличии ПАВ в составе Т.п. Жидкие Т.п. могут возникать самопроизвольно между зернами в поликристаллич. твердых телах, если поверхностная энергия границы зерна превышает поверхностное натяжение на гратще твердой и жидкой фаз более чем вдвое (условие Гиббса-Смита). Газообразные Т.п. с заметным временем жизни могут возникнуть мeждJ каплей и объемной жидкостью в условиях испарения. [c.607]

    Большое научное значение приобретает также разработка теории самопроизвольного образования коллоидных систем типа высокодиоперсных суспензий, эмульсий и полуколлоидных растворов мыл и некоторых белковых веществ. Такие системы являются равновесными, термодинамически устойчивыми. Изменения температуры и концентрации дисперсной фазы в таких системах дают возможность непрерьгано смещать равновесие и переходить от двухфазных коллоидных и полумоллоид-ных систем к истинным растворам. [c.335]

    Межфазное натяжение можно понизить изменением температуры и введением в систему подходящего поверхностно-активного вещества, называемого эмульгатором. Например, при добавлении в двухслойную систему бензол — вода некоторого количества 0,1 кн. Na l и олеиновой кислоты поверхностное натяжение на границе раздела бензол — вода снижается до такого значения (4- 10 дж х X м ), при котором происходит самопроизвольное образование эмульсии бензола в воде. [c.353]

    Агрегативная устойчивость эмульсий может обусловливаться многими факторами устойчивости.. Образование этих систем возможно и путем самопроизвольного диспергирования при определенных условиях. Так, эмульсии самопроизвольно образуются в двухкомпонентной гетерогенной системе (без эмульгатора) при температуре смешения, близкой к критической. Как уже отмечалось, гетерогенная система вода — фенол самопроизвольно переходит в термодинамически устойчивую эмульсию при температуре несколько ниже критической (/,ф = 66,4°С). В этих условиях межфазное натяжение настолько мало (менее [c.398]

    В области контакта двух полимеров могут наблюдаться морфологические изменения двух типов [166]. Для первого характерным является наличие граничной поверхности и двух слоев по обе стороны от нее. Механизм развивающихся при этом процессов заключается в том, что адсорбционное взаимодействие макромолекул на межфазной границе приводит к подавлению структурообразования вблизи граничной поверхности. Это влияние распространяется по обе стороны от граничнор поверхности каждый полимерный компонент препятствует структурообразованию в граничащей с ним области второго полимерного компонента [166]. Во втором случае возникает переходный слой, представляющий собой самопроизвольно образующуюся эмульсию одного полимера в другом. Этот процесс обусловлен близостью поверхностных натяжений компонентов. Межфазная граница в этих условиях является неустойчивой, что и способствует образованию переходного слоя, состоящего из микрофаз обоих компонентов. Подобное самопроизвольное образование эмульсий происходит вследствие расслаивания раствора смеси полимеров [171]. [c.99]

    Идея о возможности самопроизвольного образования эмульсий в результате расслоения полимеров, растворенных в общем растворителе, успешно развивается в последние годы Кулезне-вым. [c.19]

    Высокая устойчивость эмульсий может наблюдаться и тогда, когда ПАВ (ОП-7, додецилбензолсульфонат и др.) не создают адсорбционные слои с сильно выраженным структурно-механическим барьерам. По Таубману с сотр. [36—38] появление структурно-механического барьера связано с самопроизвольным образованием на границе соприкасающихся фаз ультрамикроэмульсии. При этом структурно-механический фактор стабилизации связан с образованием на границе раздела масло —вода сложных надмолекулярных структур в форме многослойной фазовой пленки ультрамикроэмульсии со структурой адсорбционного слоя. Она и обеспечивает устойчивость эмульсии. [c.31]

    Ко второй гр л1пе относятся так называемые критические лиофиль-ные эмульси11 днсперсные системы, термодинамически устойчивые, самопроизвольно образующиеся эмульсии с межфазной поверхностной энергией, меньшей граничной энергии а . Лиофильные системы являются полуколлоидами (семиколлоидами) и характеризуются высокой дисперсностью. Предельный случай лиофильных систем соответствует безграничной взаимной растворимости, когда а=0, т. е. образованию однофазной системы — истинного раствора. Непрерывный переход от лиофобных к лио-фильным системам, т. е. от грубо дисперсных систем через полуколлоиды [c.15]

    Хотя внешнее воздействие полностью отсутствует, в самой системе вблизи поверхности происходят внутренние физико-химические процессы, что приводит к разрушению этой поверхности. В процессе участвуют гравитационные силы, которые преодолеваются внутренними силами. В результате капельки более тяжелой жидкости оказываются распыленными ( самопроизвольно ) в более легкой. Так, если чистый толуол осторожно привести в соприкосновение с водой, то не образуется никакой эмульсии. Однако нри исиользо-вании раствора толуола с 10% метанола начнут проявляться внутренние процессы. Через некоторое время органическая фаза станет мутнеть из-за образования эмульсии, тогда как слой воды останется прозрачным. Если же взять раствор толуола с 40 о метилового спирта, то, наоборот, помутнение начнется в воде, тогда как органические вещества сохранят прозрачность. [c.60]

    A.A. Жуховицкий предложил следующий механизм сажо-эмулъгирования жидкостей. На границе раздела двух жидких фаз при взаимодействии двух веществ, каждое из которых растворимо только в одной из соприкасающихся фаз, образуется поверхностно активное соединение. Протекающая в существенно неравновесных условиях адсорбция образующегося вещества способна приводить к резкому снижению поверхностного натяжения и самопроизвольному диспергированию одной из фаз в другой. По завершении химической реакции образования на межфазной поверхности ПАВ, скорость его адсорбции по мере приближения к равновесным условиям падает, вследствие чего поверхностное натяжение может снова возрасти. Исходя из такого механизма был предложен следующий метод получения устойчивых эмульсий. Раствор ПАВ в дисперсной фазе, растворимый в обеих контактирующих жидкостях, интенсивно перемешивается с чистой дисперсионной средой. При этом происходит перенос ПАВ через межфаз-ную поверхность, что вызывает турбулизацию поверхности и приводит к образованию наряду с более крупными каплями (эмульсии) большого числа очень маленьких капелек (микроэмульсии), оказывающих стабилизирующее действие на систему. [c.17]

    Дисперсия окиси совмещается с латексом с образованием однородной системы, стойкость которой невелика и до некоторой степени зависит от природы ПАВ, вводимого в дисперсию. С диапергатором НФ продолжительность существования системы до начала процесса частичной самопроизвольной коагуляции равна 5—6 мин, с мылами канифоли — 2— 3 мин. Смешение дисперсии окиси с эмульсией масла ПН-6 дает однородную смесь, ие изменяющуюся в течение суток. [c.197]

    Н. П. Песков (1920) ввел понятие о двух видах устойчивости дисперсных систем седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет системе сохранять равномерное распределение частиц в объеме, т. е. противостоять действию силы тяжести и процессам оседания или всплывания частиц. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем — это способность противост()ять агрегации частиц. В этом отношении дисперсные системы делят на два класса 1) термодинамически устойчивые, или лиофильные, коллоиды, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (мицеллярные растворы ПАВ, растворы ВМВ и т. п.). При образовании этих систем свободная энергия Гиббса системы уменьшается (Лй<0) 2) термодинамически неустойчивые, или лиофобные, системы (золи, суспензии, эмульсии). Для них А6 > 0. [c.424]


Смотреть страницы где упоминается термин Эмульсии самопроизвольное образование: [c.155]    [c.155]    [c.163]    [c.213]    [c.34]    [c.331]    [c.18]   
Коллоидная химия 1982 (1982) -- [ c.285 ]




ПОИСК





Смотрите так же термины и статьи:

Эмульсии образование

Эмульсии самопроизвольные



© 2024 chem21.info Реклама на сайте