Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий и его сплавы, конструкционный

    В качестве наполнителей применяют различные неорганические и органические материалы — порошкообразные, волокнистые или слоистые. К порошкообразным материалам относятся древесная мука, опилки, некоторые минеральные вещества к волокнистым— асбест, стеклянное волокно к слоистым — текстиль, стеклянная ткань, древесная стружка, бумага и др. (Газонаполненные пластмассы — пенопласты и поропласты — составляют особую группу.) Наибольшее повышение механической прочности достигается обычно при применении слоистых и волокнистых наполнителей. В табл. 68 сопоставлены основные механические свойства пластмасс, приготовленных на основе полиэфирной смолы, со свойствами смолы в чистом состоянии, а также со свойствами сплавов алюминия и конструкционной стали. [c.597]


    Сопоставлены также свойства сплавов алюминия и конструкционной стали) [c.597]

    Алюминий - важнейший конструкционный материал, основа легких коррозионно-стойких сплавов (с магнием-дюралюмин, или дюраль, с медью - алюминиевая бронза, из которой чеканят мелкую разменную монету). Чистый алюминий в больших количествах идет на изготовление посуды и электрических проводов. [c.180]

    Резины и эбониты применяют как в виде различных прокладочных и уплотнительных деталей и конструкционных материалов, так и в качестве защитных покрытий от действия агрессивных сред для аппаратов и сосудов из стали, чугуна, латуни, алюминия, сплавов алюминия и магния, бронз (за исключением оловянистой). [c.197]

    Ряд зарубежных фирм считает сплавы алюминия основным конструкционным материалом для производства кислородных установок. Из алюминиевых сплавов изготовляют разделительные колонны, трубчатые теплообменники и теплообменные аппараты сложной конструкции с развитой теплообменной поверхностью. [c.504]

    В качестве конструкционных материалов насадки используются металлы и сплавы (углеродистая сталь, нержавеющие стали, никель, монель, хастеллой, титан, бронза, алюминий), пластические массы, керамика, стекло, графит. [c.47]

    Пластинчатые теплообменники предназначены для работы в агрессивных средах с повышенным содержанием твердых частиц. В таком теплообменнике монтируется до 180 двухсторонних пластин. Пластины изготовляют из различных конструкционных материалов (тантал, медно-никелевый сплав, монель, нержавеющая сталь различных составов, алюминий). Верхняя рама теплообменника имеет разъемные секции, что позволяет быстро заменять пластины. В зависимости от площади пластин теплообменники имеют различную производительность 500—5000 и 3 тыс.— 15 тыс. л/ч. Площадь пластин составляет 0,915, 0,54 и 0,292 м [109]. Для крепления пластин средней величины применяют центральную опору, в случае пластин с большой поверхностью — двойную опору. [c.118]

    Е. Конструкционные материалы. Основными конструкционными материалами являются алюминий, углеродистая и нержавеющая стали. Выбор материала определяется расчетными предельными значениями давления и температуры, а также коррозионной стойкостью. В отсутствие коррозионных жидкостей высокая теплопроводность алюминия обеспечивает самую низкую стоимость теплообменника. Алюминий целесообразно применять в диапазоне температур от криогенных до 250 °С, углеродистую сталь — от 250 до 480 "С, нержавеющую сталь — в диапазоне 250—650 С. Для работы при высоких температурах в условиях коррозии предпочтительно использовать нержавеющие стали. Медь удобна для паяных конструкций и обеспечивает идеальные тепловые свойства. Тем не менее ее применяют только в коррозионной среде, где неприменим алюминий. В большинстве автомобильных радиаторов применяются медь или медные сплавы. [c.307]


    Наиболее полно исследованы механические свойства в области низких температур конструкционных свариваемых сплавов алюминия с марганцем и магнием. Для сплавов, упрочняемых термообработкой (типа дюралюминия), и сплавов для поковок таких данных значительно меньше. [c.142]

    Пассивным называется металл, являющийся активным в электрохимическом ряду напряжений, но тем не менее корродирующий с очень низкой скоростью. Пассивность — это свойство, лежащее в основе естественной коррозионной устойчивости многих конструкционных металлов, таких как алюминий, никель и нержавеющая сталь. Некоторые металлы и сплавы можно перевести в пассивное состояние, выдерживая их в пассивирующей среде (например, железо в хроматном или нитритном растворах) или с помощью анодной поляризации при достаточно высоких плотностях тока (например, железо в серной кислоте). [c.70]

    Оксидирование — процесс искусственного образования иа поверхности металлов окислов с целью защиты от коррозии, декоративной отделки, повышения сопротивления износу и др. Наибольшее распространение получило оксидирование алюминия и его сплавов, применяемых в качестве конструкционных материалов в самолетостроении, авиационном моторостроении и автомобилестроении, а также для изготовления различных изделий. [c.453]

    Алюминий и его сплавы являются важным конструкционным материалом в самолето- и ракетостроении. На воздухе поверхность алюминия и его сплавов покрыта естественной окисной пленкой, толщина которой в обычных атмосферных условиях 0,005—0,2 мк. Пленка повышает химическую устойчивость алюминия, но не может служить надежной защитой против коррозии. При эксплуатации изделий с естественной окисной пленкой во влажной атмосфере или в морской, воде на поверхности алюминия образуется белый налет продуктов коррозии. Для повышения сопротивления коррозии окисную пленку на алюминии и его сплавах искусственно утолщают химическим или электрохимическим оксидированием. [c.145]

    Применение. Алюминий второй (после железа) металл по объему производства и применения в технике. Используют как чистый алюминий, так и сплавы. Сплав дюралюминий (сокращенно дуралюмин, дюраль), содержащий, кроме алюминия, 4% (масс.) Си, 1,5% Mg, 0.5% Мп-основной конструкционный материал а самолетостроении. Большое количество алюминия идет иа изготовление проводов. Следует заменять (те это возможно) медные провода алюминиевыми, так как медь значительно более дорога и дефицитна. [c.355]

    Титан немного тяжелее алюминия, но в три раза прочнее его к тому же титан и его сплавы обладают высокой коррозионной стойкостью, жаростойкостью. Они используются в качестве конструкционного материала в самолетостроении, ракетной технике и т. д. Этим требованиям отвечают также легкие магний-циркониевые сплавы. Цирконий почти не захватывает тепловые нейтроны, поэтому он используется в качестве конструкционного материала для атомных реакторов. Использование циркония в ядерной технике потребовало тщательного разделения циркония и гафния, так как гафний в этом случае является вредной примесью. [c.127]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Сплавы на основе магния довольно многочисленны и делятся на два типа — литейные и деформируемые, содержащие до 12% добавок — алюминия, цинка, марганца, циркония и реже церия. Применяются они в качестве конструкционных материалов в авиа-, автостроении, в ракетной технике и в других областях. [c.55]


    По использованию в качестве конструкционного материала алюминий занимает одно из ведущих мест среди других металлов. Особенно широко используют легкие сплавы на основе алюминия, отличающиеся высокой удельной прочностью, коррозионной стойкостью и другими ценными качествами. Алюминий сплавляется со многими металлами. Промышленные сплавы обычно содержат легирующие добавки, вводимые с целью повышения механической прочности. [c.180]

    Наибольшее значение имеют алюминий и его сплавы как конструкционные материалы. [c.181]

    Алюминий Проводники для электропромышленности производство бытовых Щ)иборов, сосудов, профилей, детали различных форм, упаковочной фольги в алюмотер-мим в сплавах конструкционный материал [c.263]

    Применение. В виде сплавов —конструкционный материал, особенно широко используемый в судо- н самолетостроении. Особо чистый алюминий — проводник в электротехнике. Чистый алюминий применяется для изготовления деталей различных аппаратов и бытовой посуды, в виде гранул —для термитной сварки и для алюминотермического получения ценных металлов, в синтезе алюминийорганических катализаторов, в производстве полимеров (например, полиэтилена низкого давления), в виде порошка —для получения пенобетона (пена образуется в результате выделения Hj из щелочной бетонной массы), в пиротехнике н как серебряноподобный пигмент для красок. [c.307]

    КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ — материалы, отличающиеся конструкционной прочностью и другими мех. св-вами. Различают К. м. металлические, неметаллические и композиционные. Металлические K.M. (табл. 1) нодразделяют по технологическому исполнению (деформируемые, литейные, свариваемые, спеченные, склеиваемые, паяные), по температурным условиям эксплуатации (теплостойкие, криогенные), по системе сплавов алюминия сплавы, титана сплавы. [c.617]

    Фланцы литые применяют для литой стальной или чугунной арматуры плоские приварные — для сварной арматуры фланцы с шейкой рекомендуется применять для штуцеров ответственных апг[аратов из углеродистой и легированных сталей, так как шейка повышает прочность фланца н обеспечивает качественную сварку его с трубой. Стальные свободные фланцы на отбортовке (ГОСТ 12822 80) следует применять для входных и выходных штуцеров у аппаратов и машин из алюминия, меди и других цветных металлов или керамики, фсрросилида и других пеметалличсских и хрупких материалов. Кроме того, стальные свободные фланцы рекомендуется применять в целях экономии дефицитных и дорогостоя-ии-1х конструкционных материалов, например высоколегированной хромоникелевой стали, титана, сплава цветных металлов и др. Для штуцеров из двухслойных металлов желательно применять свободные фланцы из углеродистой стали на приварном кольце. [c.80]

    Выпускаются в виде различных профилей фасонные горячепрессованные Б виде полого квадрага толщиной стенки 8 более 5 мм, диа-метрюм описанной окружности Д=30-130 мм (ТУ 3-752-77) из алюминия и алюминиевых сплавов 8>1, Д=30-350 (ГОСТ 8617-81) из магниевых сплавов 8>1. Д=до 150 (ГОСТ 19657-86) конструкционные из титановых сплавов 8>2, Д= до 200 (ГОСТ 1-92051-76). [c.28]

    Плакирование является одним из основных способов защиты от коррозии легких силавов на основе алюминия, главным образом сплавов типа дюралюминия. Известно, что дюралюминий как конструкционный материал применяется вследствие его высоких ме.чанических свойств и малого удельного веса. Однако этот сплав обладает низкой сопротивляемостью корроз)ш, особенно в морской атмосфере. [c.327]

    Бериллий используется для получения сплавов, обладающих высокой электропроводностью и механической прочностью, а также в качестве покрытия, наносимого, в частности, термодиффузионным способом. Широкое распространение находят бериллие-вые бронзы (1—3% Ве), которые отличаются высокой твердостью и упругостью. Добавление 0,01% Ве предохраняет магний от воспламенения. В связи с гем, что бериллий даже при 500 °С не меняет своих механических свойств, тогда как алюминий теряет их уже при 200 °С, конструкционным бериллсодержащим материалам предсказывают большое будущее в новой технике. [c.529]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Основное средство защиты металлов от газовой коррозии — легирование такими компонентами, которые улучшают свойства защитных пленок, образующихся при окислении металла. Для стали такими элементами являются хром, алюминий, кремний. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9% хрома, молибденом или кремнием, применяют, например, в парогенераторо- и турбостроении. Сплав, содержащий 9—12% хрома, применяется для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.218]

    Основная масса алюминия используется для получения легких сплавов — дюралюмина (94% А1, остальное Си, Mg, Мп, Ре и 81), силумина (85—90% А1, 10—14% 81, остальное N3) и др. Алюминий применяется, кроме того, как легирующая добавка к сплавам для придания им жаростойкости. Алюминий и его сплавы занимают одно из главных мест как конструкционные материалы в самолетостроении, ракетостроении, машиностроении и т. п. Коррозионная стойкость алюминия (особенно анодированного) значительно превосходит коррозионную стойкость стали. Поэтому его сплавы используются как конструкционные материалы и в судостроении. С -элементами алюминий образует химические соединения — интерметаллиды (алюми-ниды) М1А1, Ы1зА1, СоА1 и др., которые используются в качестве жаропрочных материалов. Алюминий применяется в алюминотермии для получения ряда металлов и для сварки термитным методом. Алюминотермия основана на высоком сродстве алюминия к кислороду. Например, в реакции, протекающей по уравнению [c.279]

    Магний как легкий и коррозионно-стойкий металл используется в конструкционных сплавах для авиа- и автомобилестроения. В промышленности магний получают электролизом расплава Mg li или водного раствора MgS04 стронций и барий-прокаливанием SrO и ВаО с алюминием. Очень опасен для человека радиоактивный изотоп (период полураспада 28 ч), он замещает в организме кальций и накапливается в костных тканях. [c.172]

    Скандий широкого применения в технике пока не находит, но является перспективным. Скандий при почти равной плотности с алюминием имеет температуру плавления примерно на 750 выше. В связи с этим он мог бы представить интерес как конструкционный материал в авиа- и ракетостроении (для ядерного авиационного двигателя), представляют интерес и сплавы скандия с титаном, обладающие высокой прочностью. Сплавы скандия с висмутом или сурьмой являются сверхпроводящими материалами. Светотехника располагает возможностью резко повысить чувствительность к инфракрасным лучам цинкосульфидных фосфоров добавлением скандия. [c.70]

    Металлический алюминий и его сплавы (после железосодержащих сплавов) наиболее широко используются в практике конструкционные материалы, сплавы для изготовления летательных аппаратов и электрических проводов. Ежегодно мировое потребление металлическога алюминия составляет миллионы тонн. [c.56]


Смотреть страницы где упоминается термин Алюминий и его сплавы, конструкционный: [c.16]    [c.406]    [c.66]    [c.492]    [c.617]    [c.651]    [c.677]    [c.50]    [c.511]    [c.251]    [c.261]    [c.92]    [c.92]    [c.156]   
Перекись водорода (1958) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Алюминий и его сплавы, конструкционный материал для работы

Механические свойства некоторых конструкционных сталей, меди, алюминия и их сплавов при низких температурах



© 2025 chem21.info Реклама на сайте