Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаг ген белка

    В середине 1960-х годов Д. Виноград и сотр. обнаружили, что ДНК некоторых бактериофагов и митохондрий может существовать в виде циклических молекул. Позже было установлено, что большинство вирусных и множество клеточных ДНК имеют кольцевую форму. В том случае, если обе полинуклеотидные цепи в кольцевой молекуле, образованной двуспиральной ДНК, ковалентно замкнуты (аналогичная ситуация возникает, когда концы петель двуспиральной ДНК скреплены белками), то они уже не могут быть разделены в пространстве. [c.31]


    Камерные электрофоретические приборы применяют в тех случаях, когда разделяемые вещества заметно отличаются по электрофоретической подвижности. Производительность обычных лабораторных приборов колеблется в пределах от 100 мг до 5 г. Камерные приборы позволили успешно разделить аминокислоты и пептиды [50, 56, 76], белки [50, 611, бактериофаги [54], витамины [77], гормоны [40], а также отделить холин от гистамина [27] и других веществ [78]. [c.533]

    Матрица сравнения среднеквадратичных С -расстояний также может быть использована для выявлений структурного подобия между частями белков. Такое подобие обнаружено, например, между фрагментами лизоцима бактериофага Т4 и лизоцима белка куриного яйца [802]. Анализируемые длины сегментов составляли 40 и 80 остатков. [c.239]

    Эта работа, хотя к настоящему времеии не полностью завершена, показала, что многие птичьи лизоцимы (за исключением, видимо, лизоцима из белка гусиных яиц [4]) весьма близки по химическому строению к лизоциму белка куриных яиц. В итоге, сейчас насчитывают пять линий лизоцимов. К ним относятся лизоцим[)1 из а) яичного белка кур (а также из органов и тканей человека и мыши, которые имеют высокую степень гомологии с лизоцимом белка куриных яиц), б) яичного белка гусей, в) микроскопических грибов, г) бактериофагов, д) растений [4]. Все эти ферменты объединяет то, что они входят в группу 0-гликозидаз и катализируют гидролиз 1,4-р-связи между остатками Ы-ацетил-мурамовой кислоты и Ы-ацетилглюкозамииа в мукополисахаридах и мукопентидах. В дальнейшем, если нет специального указания, речь идет о лизоциме белка куриных яиц. [c.139]

    Степень индукции SOS-системы в определенном смысле отражают благополучие клетки и ее шансы на выживание. Поэтому некоторые относительно автономные внутриклеточные генетические элементы, например умеренные бактериофаги, используют индукцию SOS-системы в качестве сигнала для размножения и уничтожения клетки-хозяина безвредный до того участок хромосомы (профаг, см. гл. ХП1), почувствовав слабость хозяина, начинает размножаться и уничтожает его, чтобы спастись самому. Для фага лямбда показано, что чувствительность к состоянию индукции SOS-системы объясняется тем, что репрессор фага устроен аналогично белку LexA и самораскусывается , связавшись с активированным КесА-белком. [c.81]

    Полиамины составляют ряд родственных соединений, частично образующихся из аргинина они присутствуют во всех клетках в относительно больших количествах (зачастую в миллимолярных концентрациях). Содержание полиаминов в клетках часто находится в стехио-метрическом соотношении с содержанием РНК. Однако у Т-четных бактериофагов н большинства бактерий содержание полиаминов ассо-ииировано с ДНК. Полиаминам приписывают множество функций. Они могут в известной мере замещать клеточный К" " и M.g + и, видимо, играют существенную регуляторную роль в процессах синтеза нуклеиновых кислот и белков [36]. Спермидин, по всей вероятности, играет специфическую роль в процессе клеточного деления [40а]. Полиамины могут взаимодействовать с двойной спиралью нуклеиновых кислот, образуя мостики между полинуклеотидными цепями в этом случае положительно заряженные аминогруппы взаимодействуют с отрицательно заряженными фосфатами остова нуклеиновых кислот [40]. В одной модели (предложенной Тсубои [40Ь]) тетраметиленовая часть молекулы полиамина укладывается в малой бороздке, связывая три пары оснований, а триметиленовые группы (одна в спермидине и две в спермине) образуют мостики между смежными фосфатными группами [c.99]


    Другим интересным примером использования рибосом для защиты нуклеиновой кислоты от ферментативного гидролиза могут служить опыты с одноцепочечной ДНК бактериофага ФХ174 [121]. В этом случае рибосомы защищали последовательность нуклеотидов, в состав которой входил инициаторный кодон ATG. Этот кодон и следующие за ним семь других кодонов соответствовали известной N-концевой ам1и-нокислотной последовательности детерминируемого геном G белка шипов этого бактериофага. [c.244]

    Изменения в структуре ДНК встречаются очень редко. Так, например, в среднем ген может удвоиться 10 раз, прежде чем произойдет заметная мутация [128а]. Тем не менее, работая с бактериями нли бактериофагами, мы можем обследовать чрезвычайно большое число особей в поисках мутаций. Если, например, посеять один миллион вирусных частиц на чашку с агаром в условиях, позволяющих распознать мутацию определенного гена, то в среднем мы можем надеяться обнаружить один мутант. Наиболее часто встречаются мутации, обусловленные заменами пар оснований (точковые мутации). Оии происходят в результате включения неправильного основания при репликации или репарации ДНК. При таких мутациях одно основание в триплете кодона замещается другим. В результате возникает другой кодон, что приводит к замене в соответствующем белке одной аминокислоты на другую . Замену одного пиримидина на другой С—)-Т или Т—)-С) или одного пурина на другой пурин иногда называют транзицией, тогда как замену пурина на пиримидин или, [c.246]

    Как можно ответить на вопрос о том, локализованы ли мутации в одном и том же гене, в близко расположенных генах или же в генах, отстоящих друг от друга на некотором расстоянии Ответ на этот вопрос можно получить с помощью теста на комплементацию. Если два мутантных бактериофага несут мутации в разных генах, то при заражении бактерии обоими мутантными фагами одновременно часто оказывается, что бактериофаги могут размножаться в бактерии-хозяине. Поскольку в этйм случае у каждого фага есть неповрежденный ген для Одного из двух затронутых белков, все генетические функции в этом случае выполняются. Если же у обоих мутантных фагов поврежден Один и тот же ген, то такие фаги не смогут дополнять функции друг Друга при совместном заражении. Такой эксперимент часто называют Чис-гранс-сравнением. Одновременное заражение двумя различными мутантами — это транс-тест. В качестве же контроля используют цис-тест бактерию заражают одновременно рекомбинантом, несущим обе мутации в одной и той же ДНК, и стандартным фагом. В этом случае репликация должна протекать нормально. [c.250]

    Пытаясь найти по возможности более простые системы для изучения синтеза ДНК, многие исследователи обратились к мелким ДНК-содержащим вирусам типа ФХ174 и М13. Они не обошли при этом вниманием бактериофаги, снабженные отростками фаги Я, Т7 и Т4, а также плазмиду колицина Е-1. Преимущество этих систем состоит в том, что для них легче смоделировать репликацию ДНК в клеточных экстрактах, а кроме того, ДНК вирусов и плазмид хорошо изучены с генетической точки зрения. Во многих случаях репликация зависит как от генов вируса, так и от генов клетки-хозяина. Так, например, мутации генов dnaB, D, Е, F и О приводят к потере способности поддерживать рост фага X точно так же, как и в случае, когда инактивированы /s-гены. Вместе с тем фаг X сохраняет способность к репликации в бактериях с мутантными генами А я С. Многие вирусы, в том числе Т-четные фаги, содержат гены, кодирующие синтез своих собственных специфических ДНК-полимераз и других белков, необходимых для репликации. [c.276]

    О группе токсичных для бактерий белков (колицинов) уже шла речь в разд. Г, 7. Они, по-видимому, также связываются со специальными рецепторами на внешней мембране бактерий типа Е. соИ. Нейландс и его сотрудники обнаружили, что у Е. соН рецептор колицина М служит также рецептором и для сидерохромного пептида — феррохрома (дополнение 14-В), и для бактериофага Т5. С этим же участком мембраны связывается антибиотик альбомицин. Существует предположение, что на ранних этапах эволюции у бактерий появились молекулы, обладающие способностью к образованию хелатных комплексов с железом, причем размер этих комплексов постепенно увеличился до такой степени, что они утратили способность диффундировать через наружную мембрану в клетку. В результате возникли специфические системы переноса, которые позднее были использованы фагами к. штаммами, продуцирующими колицин . [c.306]

    Др. разновидносгь Р.б. изменяет каталитич. св-ва РНК-полимеразы (т.наз. белки-антитерминаторы). Так, у бактериофага X известны два таких белка, к-рые модифицируют РНК-полимеразу так, что она не подчиняется клеточным сигналам терминации (окончания) транскрипции (это необходимо для активной экспрессии фаговых генов). [c.218]

    Независимо Э. Волкин и Ф. Астрачан (1956) изучали синтез РНК в бактериях, зараженных ДНК-содержащим бактериофагом Т2. После заражения бактерии перестают синтезировать свои белки, и весь белковый синтез клетки переключается на продукцию белков фага. Оказалось, что основная часть РНК клетки-хозяина при этом/не изменяется, но в клетке начинается продукция небольшой фр ции метаболически нестабильной (короткоживущей) РНК, нуклеотидный состав которой подобен составу ДНК фага. [c.10]

    Дифтерийный токсин. Это белок с молекулярной массой около 60000 дальтон. Он секретируется клетками oryneba terium diphtheriae, содержащими геном лизогенного бактериофага Р белок есть продукт фагового, а не собственно бактериального, генома. Молекула белка представляет собой одну ковалентно-непрерывную полипептидную цепь, организованную по крайней мере в два, довольно [c.214]


    РНК бактериофага MS2 содержит три цистрона, разделенных нетранслируемыми последовательностями, и один цистрон, перекрывающийся с двумя другими (см. раздел А. II. 4 и рис. 6). Ближе всего к 5 -концу этой лолицистронной мРНК расположен А-цистрон (1182 нуклеотидных остатка, включая терминирующий кодон), кодирующий А-белок, или белок созревания (393 аминокислотных остатка). Далее по направлению к З -концу следует С-цистрон (393 нуклеотидных остатка, включая терминирующий кодон UAA), кодирующий белок оболочки фага (129 аминокислотных остатков). Ближе всего к З -концу располагается S-цистрон (1638 нуклеотидных остатков, включая терминирующий кодон UAG), кодирующий субъединицу РНК-репликазы (544 аминокислотных остатка). L-цистрон (228 нуклеотидных остатков вместе с терминирующим кодоном UAA), кодирующий маленький белок лизиса (75 аминокислотных остатков), перекрывает не в фазе конец С-цистрона, нетранслируемую последовательность и начало S-цистрона. (Следует заметить, что при синтезе белка оболочки и субъединицы РНК-репликазы N-концевой метионин отщепляется, и поэтому количество аминокислотных остатков в готовом белке на один меньше, чем количество значащих кодонов матрицы.) [c.234]

    Кодон терминации обязательно присутствует в конце кодирующей части каждой природной мРНК. Иногда можно видеть даже тандем терминирующих кодонов, например в конце цистрона белка оболочки бактериофага MS2, где за терминирующим кодоном UAA следует триплет UAG (см. рис. 6). [c.265]

    Перекрывание нуклеотидных последовательностей различных генов [12]. Показан сегмент 833—855 генома бактериофага (рХ174. В этом геноме последовательность 850—963 кодирует белок /, последовательность 392—847 кодируют белок D и по- едовательность 570—842 — белок Е. Таким образом, нуклеотидная последовательность. Кодирующая белок Е, полностью входит в область, кодирующую белок D, однако считывается в другой системе (строки 2 и 3). Кроме того, конец кодона D перекрывает начало кодона белка / в положении 850. [c.19]

    Особым и весьма важным типом мРНК являются нуклеиновые кислоты таких вирусов, которые, будучи построены только из белка и РНК, используют рибонуклеиновую кислоту как свой генетический материал. Одноцепочечные вирусные РНК таких объектов, как бактериофаги М52, Н17, Г2 и вирус саркомы птиц, действительно выполняют одновременно как функции собственно мРНК, так и функции матрицы для репликации в процессе биосинтеза новых вирусов. Поскольку их относительно просто получить в чистом виде, именно они стали одним из первых объектов изучения последовательности оснований в РНК (см. гл. 22.4). [c.54]

    В мРНК бактериофага MS2, состоящей из 3569 остатков, транслируется около 90 % остатков с образованием трех белков. Использование кодона GUU значительно превышает частоту использования кодонов-троек GG А или С, или G) для введения глицина, а кодон UA явно предпочтительнее, чем кодон UAU (32 9) [c.210]

    В различных нуклеопротеинах количество нуклеиновой кислоты колеблется от 40 до 65% (например, в рибосомах про- и эукариот). В вирусных нуклеопротеинах количество нуклеиновых кислот не превышает 2—5% от общей массы. Так, у вируса табачной мозаики (ВТМ) на долю РНК, правда, с огромной молекулярной массой —около 2000000, приходится всего около 2%. Остальная часть этой гигантской вирусной частицы приходится на долю однотипных белковых субъединиц (рис. 2.3). Ионная связь между РНК и белковыми молекулами ВТМ весьма непрочная и легко разрывается даже в мягких условиях, что позволяет отделить РНК от белка. Интересно, что после удаления разрывающего ионную связь агента при смешивании этих продуктов происходят полная регенерация исходного ВТМ, восстановление всех его физических параметров и биологических свойств, включая способность поражать зеленый лист. Это явление самосборки, впервые открытое у ВТМ, в дальнейшем было обнаружено также у бактериофагов, представленных нуклеопротеинами. Акад. A. . Спирин и одновременно М. Номура разделили 70S рибосомы (рибонуклеопротеины) на их состав- [c.87]

    Расиггельные вирусы чаще всего содержат РНК, а вирусы, поражающие клетки животных, содержат как РНК (вгаус саркомы Рауса и др.), так и ДНК (вирус папилломы). Бактериофаги также содержат РНК или ДНК в комплексе с белками. [c.87]

    Сократительные белки идентифицированы и в других системах. Из сперматозоидов выделен сократительный АТФ-азный белок спермазин. В хвостовых структурах бактериофагов, как и в движущихся листьях растений (в частности, мимозы), также содержатся АТФ-азные сократительные белки. [c.413]

    Работа промоторарегулируется репрессор-ным белком с1 бактериофага X. На самом деле для регуляции транскрипции с p --np0M0T0pa обычно используется термочувствительная мутантная форма репрессора с1 - белок Клетки, синтезирующие этот репрессор, сначала выращивают при температуре 28-30 °С в этих условиях репрессор блокирует транскрипцию с р --промотора. Когда культура достигает нужной фазы (как правило, середины log-фазы), температуру повышают до 42 °С, при которой l -pe-прессор инактивируется и начинается транскрипция. [c.108]

    При создании комбинаторных библиотек вместо фага X можно использовать нитевидные бактериофаги М13 или fd (рис. 10.14). В этих случаях соответствующий фрагмент антитела синтезируется как часть химерного белка, локализованного на поверхности фаговой частицы. Скрининг комбинаторной библиотеки фрагментов антител можно провести при помощи ферментного иммуносорбентного анализа (ELISA). Суть метода состоит в следующем образцы (аликвоты) из библиотеки помещают в ячейки планшеты, содержащие антиген-мишень. Ячейки промывают, чтобы удалить несвязанные фаговые частицы. В каждую ячейку вносят конъюгат, состоящий из антитела, связывающегося с белком фаговой оболочки, и фермента. Ячейки промывают для удаления несвязанного конъюгата и добавляют в каждую из них хромогенный субстрат, который расщепляется ферментом, связанным с фагом, и окраши- [c.219]


Смотреть страницы где упоминается термин Бактериофаг ген белка: [c.107]    [c.308]    [c.200]    [c.242]    [c.244]    [c.251]    [c.253]    [c.110]    [c.304]    [c.230]    [c.123]    [c.181]    [c.297]    [c.327]    [c.24]    [c.211]    [c.107]    [c.308]    [c.151]    [c.115]    [c.116]    [c.221]    [c.231]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.116 ]




ПОИСК







© 2025 chem21.info Реклама на сайте