Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок наружной мембраны

    Белки наружной мембраны можно разделить на основные и минорные. Основные белки представлены небольшим числом различных видов, но составляют почти 80 % всех белков наружной мембраны. Одна из функций этих белков — формирование в мембране гидрофильных пор диаметром примерно 1 нм, через которые осуществляется неспецифическая диффузия молекул с мас- [c.34]

    Сходный механизм используется при образовании белков наружной мембраны грамотрицательных бактерий. Эти белки содержат гидрофобную якорную последовательность, которая позволяет такому белку закрепиться в мембране. Процесс секреции данных белков часто называют экспортом. [c.69]


    Гены белков наружной мембраны [c.77]

    Факторы патогенности. Сальмонеллы образуют эндотоксин, оказывающий энтеротропное, нейротропное и пирогенное действие. Белки наружной мембраны обусловливают адгезивные свойства, устойчивость к фагоцитозу связана с микрокапсулой. [c.202]

    Факторы патогенности. Бруцеллы образуют эндотоксин, обладающий высокой инвазивной способностью, а также продуцируют один из ферментов агрессии — гиалуронидазу. Их адгезивные свойства связаны с белками наружной мембраны. [c.210]

    Среди белков наружной мембраны количественно преобладает ( 7 10 молекул на [c.229]

    Новообразованные белки наружной мембраны содержат отщепляемую сигнальную последовательность [c.230]

    Наружные мембраны клеток отличаются от внутренних по липидному составу (последние почти не содержат стеринов, имеют соотношение ФХ/ФЭ > 1) и обладают специфическим набором ферментов и рецепторов. Как правило, белки плазматических мембран со стороны внеклеточной среды обильно гликозилированы. Внутриклеточные мембраны содержат мало гликопротеинов и гликолипидов и характеризуются меньшей микровязкостью. Благодаря этому они могут образовывать органеллы малого размера. Мембранные белки выполняют различные специфические функции рецепторные, транспортные, ферментативные, энергопреобразующие и т.д. (см. далее). [c.303]

    Периплазматическое пространство, куда погружен пептидогликановый слой, заполнено раствором, в состав которого входят специфические белки, олигосахариды и неорганические молекулы. Периплазматические белки представлены двумя типами транспортными белками и гидролитическими ферментами. Транспортные белки — это переносчики, связывающиеся с соответствующими субстратами внешней среды и транспортирующие их от наружной мембраны к цитоплазматической. [c.37]

    Наружная мембрана гладкая, а внутренняя образует многочисленные складки или кристы. Пространство, ограниченное внутренней мембраной, заполнено матриксом, который примерно на 50% состоит из белка. [c.197]

    Для выявления антител применяют реакцию непрямой иммунофлюоресценции (РНИФ). Перспективным является метод вес-тернблота (иммуноблотинга), позволяющий выявить антитела к своеобразному белку наружной мембраны с мол. м. 39 кД. [c.234]

    ЕШС — энтероинвазивные эшерихии коли. Обладают тропизмом к эпителиальным клеткам толстого кишечника. Факторами их вирулентности являются наличие на поверхности клеточной стенки белков наружной мембраны, способность к инвазии и внутриклеточному размножению. Размножение бактерий приводит к гибели клетки. На месте погибших клеток образуются язвы и эрозия, окруженные воспалением. [c.73]

    Шигеллы, минуя желудок и тонкий кишечник, попадают в толстый кишечник. Прикрепляются к рецепторам мембран ко-лоноцитов и проникают внутрь с помощью белка наружной мембраны. Гибель клеток приводит к образованию эрозий и язв, окруженных перифокальным воспалением. [c.75]


    Комплекс цАМФ — БАК влияет на синтез компонентов клеточной стенки и цитоплазматической мембраны. С этим связано изменение состава белков наружной мембраны и морфологии клеток, нарушение образования жгутиков, ворсинок, фаговых рецепторов у мутантов Суа и Сгр. Это, в свою очередь, сказыва- [c.35]

    Могут быть успешно получены антисыворотки ко многим грамположительным и грамотрицательным бактериям. Поскольку преимущественно образуются серотипспецифические антитела (т. е. к углеводным структурам липополисахаридов грамотрицательных микроорганизмов, характерных для данного штамма), кроличьи сыворотки используют для серодиагностики. Перекрестная абсорбция клетками других типов и видов не представляет труда и позволяет удалить антитела к общим эпотипам белков наружной мембраны. [c.83]

    У прокариот наиболее распространенным видом процессинга белков является удаление сигнального пептида из молекул секретируемых белков. Такие белки и ферменты (экзогидролазы, белки наружной мембраны и др.) содержат на МН -конце гидрофобный пептид из 15—30 аминокислот, который необходим для транслокации белка через цитоплазматическую мембрану в процессе его синтеза. После завершения транслокации сигнальный пептид удаляется специальной сигнальной пептидазой (подробнее об экзоферментах в главе, посвященной процессам экскреции). [c.90]

    М-Белок имеет относительно простой механизм созревания. Хотя он является белком наружной мембраны, его мРНК транслируется на свободных полисомах, а сам белок проходит через небольшой пул растворимых цитоплазматических белков. Поскольку М-белок выстилает внутреннюю поверхность липидной оболочки вириона, а также связывается с нуклеокапсидом, оказалось неожиданным, что он, не накапливаясь ни на клеточной мембране, ни в цитоплазматических РНП, непосредственно включается в состав вирионов из растворимой фракции. Опыты по кинетике позволяют предложить следующее объяснение М-белок образует центр нуклеации при почковании и стоит ему [c.437]

    Патогенез. Входные ворота инфекции — полость рта. Е. oli, попадая в тонкую кишку и обладая тропизмом к клеткам ее эпителия, адсорбируется на них с помощью пилей и белков наружной мембраны. Бактерии размножаются, погибают, освобождая эндотоксин, который усиливает перистальтику кишечника, вызывает диарею, повышение температуры, признаки общей интоксикации. Кроме того, кишечная палочка выделяет экзотоксин, обусловливающий более тяжелую диарею, рвоту и значительное нарушение водно-солевого обмена. ЭПКП, образующие другие факторы патогенности, оказывают соответствующее действие на организм, что и определяет клиническую картину болезни. [c.198]

    Факторы патогенности. Все дизентерийные палочки образуют эндотоксин, оказывающий энтеротропное, нейротропное, пирогенное действие. Кроме того, S. dysenteriae (серовар I) — шигеллы Григорьева—Шиги — вьщеляют экзотоксин, оказывающий энтеротоксическое, нейротоксическое, цитотоксическое и нефро-токсическое действие на организм, что соответственно нарушает водно-солевой обмен и деятельность ЦНС, приводит к гибели эпителиальных клеток толстой кишки, поражению почечных канальцев. С образованием экзотоксина связано более тяжелое течение дизентерии, вызванной данным возбудителем. Экзотоксин могут вьщелять и другие виды шигелл. Обнаружен фактор проницаемости RF, в результате действия которого поражаются кровеносные сосуды. К факторам патогенности относятся также инвазивный белок, способствующий их проникновению внутрь эпителиальных клеток, а также пили и белки наружной мембраны, ответственные за адгезию, и микрокапсула. [c.200]

    Факторы патогенности. Холерный вибрион образует эндотоксин. Кроме того, он выделяет экзотоксин, состоящий из нескольких фракций, наиболее важной из которых является холероген. Холероген вызывает гиперсекрецию воды и хлоридов в просвет кишечника, нарушение обратного всасывания натрия, в результате возникает диарея, приводящая к обезвоживанию организма. Экзотоксин обладает также цитотоксическим действием и вызывает гибель клеток эпителия тонкой кишки. У возбудителя холеры имеются ферменты агрессии — фибринолизин, гиалуронидаза, лецитиназа, нейраминидаза. Патогенность связана также с адгезивными свойствами (белки наружной мембраны), подвижностью вибриона. [c.208]

    Факторы патогенности. В. pertussis — эндотоксин, вызывающий лихорадку, белковый токсин, обладающий антифагоцитарной активностью и стимулирующий лимфоцитоз, ферменты агрессии, повышающие сосудистую проницаемость, обладающие гистамин-сенсибилизирующим действием, вызывающие гибель эпителиальных клеток. В адгезии бактерий принимают участие гемагглюти-нин, пили и белки наружной мембраны. [c.238]

    Хотя многие детергенты оказывают на белки сильное денатурирующее действие, некоторые детергенты разрушают митохондриальныё-мембраны с сохранением ферментативной активности. Наиболее пред почтительным среди них является дигитонин (рис. 12-18), вызываЮ1Ц1й№ разрушение наружной мембраны. Остающиеся фрагменты внутренней мембраны сохраняют способность к окислительному фосфорилированию. Последующее фракционирование субмитохондриальных частиц, проводится с помощью химической обработки. Одна из таких процедур дает набор комплексов , катализирующих реакции четырех разных, частей цепи переноса электронов [69]. Реакции, катализируемые комплексами I, II, III и IV, указаны в уравнении (10-10). [c.399]


    Проблема проведения заместительной ферментотерапии у больных с дефицитом лизосомных ферментов привлекает пристальное внимание специалистов [22]. В самом деле, клетки обладают способностью захватывать ферменты из внеклеточной среды, что было показано на культуре тканей. По всей вероятности, в ходе пиноцитоза наружная мембрана втягивается в клетку, образуя пиноцитозные вакуоли, сливающиеся затем с лизосомами. Далее гидролазы лизосом расщепляют полисахариды клеточной стенки, что, по-видимому, необходимо для нормального функционирования клетки. С другой стороны, пиноцитоз— это способ потребления клеткой ферментов из внеклеточной среды, и именно это лежит в основе принципиальной возможности заместительной ферментотерапии. Однако с ферментотерапией связана проблема аллергической реакции организма на введение чужеродных белков в кровоток. В тех случаях, когда избыточно накапливаемые вещества посту- [c.544]

    Обычно транспорт белков через клеточную мембрану обеспечивают N-концевые аминокислотные последовательности, называемые сигнальными пептидами (сигнальными последовательностями, лидерными пептидами). Иногда удается сделать белок секретируемым, присоединив к кодирующему его гену нуклеотидную последовательность, ответственную за синтез сигнального пептида. Однако простое наличие сигнального пептида не обеспечивает эффективной секреции. Кроме того, Е. соН и другие грамотрицательные микроорганизмы обычно не могут секретировать белки в окружающую среду из-за наличия наружной мембраны. Есть по крайней мере два способа решения этой проблемы. Первый - использование грамположитель-ных про- или эукариот, лишенных наружной мембраны, второй - создание грамотрицательных бактерий, способных секретировать белки в среду, с помощью генной инженерии. [c.126]

    Некоторые грамотрицательные бактерии сек-ретируют в среду белок, называемый бактерио-цином. Он активирует фосфолипазу А, локализованную во внутренней мембране бактериальной клетки, в результате чего и внутренняя, и наружная мембраны становятся проницаемыми, и некоторые цито- и периплазматические белки высвобождаются в культуральную среду. Таким образом, можно встроить ген бактериоцина в плазмиду так, чтобы он находился под контролем сильного регулируемого промотора, трансформировать клетки Е. соН этой плазмидой и сделать их проницаемыми. Если же Е. oli уже несут ген бактериоцина, их можно трансформировать другой плазмидой, которая содержит ген нужного белка, сшитый с нуклеотидной последовательностью, кодирующей сигнальный пептид. Если оба гена находятся под контролем одного промотора, то их можно индуцировать одновре- [c.126]

    Она состоит из фосфолипидов, типичных для элементарных мембран, белков, липопротеина и липополисахарида (рис. 10, А). Специфическим компонентом наружной мембраны является липопо-лисахарид сложного молекулярного строения, занимающий около 30—40% ее поверхности и локализованный во внешнем слое (рис. 10, Б). [c.34]

    Пептидогликан образует только внутренний слой клеточной стенки, неплотно прилегая к ЦПМ. У разных видов грамотрицательных прокариот содержание этого гетерополимера колеблется в широких пределах (1-10 % и больше от веществ клеточной стенки). Предполагается, что у большинства видов грамотрицательных прокариот он образует одно- или двухслойную структуру, характеризующуюся весьма редкими поперечными связями между гетерополимерными цепями. Снаружи от пептидогликана располагается дополнительный слой клеточной стенки — наружная мембрана. Она состоит из полисахаридов, белков и липидов. Специфическим компонентом наружной мембраны является липополисахарид сложного молекулярного строения (рис. 1.4). [c.17]

    Функция наружной мембраны. Наружная мембрана грамотрицательных бактерий выполняет не только механические, но и важные физиологические функции. В ее двойной липидный слой, состоящий из липида А, полисахаридов и фосфолипидов, встроены белки, пронизывающие этот слой насквозь. Вероятно, эти трансмембранные белки представляют собой заполненные водой каналы — гидрофильные поры в лйпофильной мембране поэтому их называют норинами. Существует несколько различных поринов. Они пропускают через мембрану гидрофильные низкомолекулярные вещества (вплоть до молекулярной массы порядка 6000). [c.17]

    Наружная мембрана плотно прилегает к муреиновому слою и связана с ним липопротеинами. Муреиновый слой, видимо, свободно проницаем для различных веществ. Промежуток между муреином и плазматической мембраной называют перинлазматическим пространством. В нем находятся белки, в том числе деполимеразы (протеи-назы, нуклеазы), периферические белки плазматической мембраны и так называемые связующие белки. Последние участвуют в переносе некоторых субстратов в цитоплазму и служат рецепторами хемотаксических стимулов. Периплазматическое пространство, по всей вероятности, играет также роль в осморегуляции. [c.17]

    Для того чтобы жить и размножаться, клетка микроорганизма должна обмениваться с окружающей средой метаболитами, энергией и генетической информацией. У большинства микроорганизмов наружные слои клетки и клеточные стенки не являются барьером для проникновения низкомолекулярных веществ. Исключение составляют грамотрицательные бактерии, у которых существует наружная мембрана, образованная липонолисахаридами, белками, фосфолипидами и др. Но и у них существуют пути проникновения веществ в клетку 1) гидрофильные поры, которые образованы бел-ками-поринами 2) транспортные системы - витамин В 2, нуклеози-ды, мальтоза и др. (рис. 3.1). [c.46]

    Весьма сходные процессы происходят и в бактериях. Наружная мембрана клеток Е. oli состоит из липидов и белков. Последние синтезируются на рибосомах, связанных с внутренней поверхностью внутренней мембраны. Сигнальные последовательности на N-концах этих белков обеспечивают их прохождение сквозь внутреннюю мембрану и сквозь стенку к соответствующим местам наружной мембраны, где и происходит встраивание полипептида. Г енетические исследования сигнальных последовательностей и пептидаз, которые их в конечном счете удаляют, стали возможны благодаря существованию соответствующих бактериальных мутантов. [c.946]

    Эндосимбиотическая гипотеза. Клеточные органеллы эукариот имеют много фундаментальных общих черт с прокариотическими клетками. Они содержат кольцевые молекулы ДНК, их рибосомы относятся к типу 70S, а мембраны содержат компоненты электрон-транспортной цепи (флавины, хиноны, Fe-S-содержащие белки, цитохромы) и выполняют функцию дыхательного или фотосинтетического преобразования энергии. Согласно симбиотической гипотезе, митохондрии происходят от бесцветных аэробных бактерий, а хлоропласты-от цианобактерий, сделавшихся эндосимбионтами каких-то примитивных эукариотических клеток. В дальнейшем должна была произойти очень большая специализация функция регенерации АТР была передана клеточным органел-лам. Наружная мембрана эукариотической клетки не содержит компонентов электрон-транспортной цепи, С другой стороны, клеточные органеллы тоже не самостоятельны они, правда, обладают собственными молекулами ДНК, однако значительная часть информации, необходимой для синтеза их белков, находится в клеточном ядре. Примером может служить рибулозобисфосфат-карбоксилаза-ключевоп фермент ав-тотрофной фиксации Oj у зеленых растений. Она состоит из 8 боль- [c.26]

    У этих бактерий поверх однослойного или самое большее двуслойного муреинового мешка располагается наружный слой клеточной стенки. На ультратонких срезах бактерий он сходен по виду с плазматической мембраной-это так называемая наружная мембрана. Этот слой стенки состоит из белков, фосфолипидов и липополисахаридов (рис. 2.28). [c.57]

    Функция наружной мембраны. Наружная мембрана грам-отрицательных бактерий выполняет не только механические, но и важные физиологические функции. В ее двойной липидный слой, состояищй из липида А, полисахаридов и фосфолипидов, встроены белки, пронизываю-пще этот слой насквозь. Вероятно, эти трансмембранные белки представляют собой заполненные водой каналы-гидрофильные поры в липофильной мембране поэтому их называют поринами. Существует [c.59]


Смотреть страницы где упоминается термин Белок наружной мембраны: [c.35]    [c.74]    [c.75]    [c.161]    [c.368]    [c.201]    [c.206]    [c.468]    [c.355]    [c.390]    [c.116]    [c.117]    [c.71]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.116 ]




ПОИСК







© 2024 chem21.info Реклама на сайте