Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоты сходных процессов

    Из приведенного примера следует, что работа является одной из форм передачи энергии от системы к окружающей среде и наоборот, т. е. величина работы есть количественная характеристика переданной энергии. Работа, как и теплота, связана с процессом и не является свойством системы, т. е. функцией состояния. Величина работы зависит от пути процесса. Бесконечно малое количество работы (элементарная работа) б 1/ не является полным дифференциалом. Значение работы, как и теплоты, выражают в джоулях. Наряду со сходными свойствами теплоты и работы между этими понятиями имеется существенное различие. [c.21]


    В общих чертах растворение полимеров напоминает взаимное растворение двух жидкостей и поэтому термодинамика этих процессов сходна (см. разд. IV.8). Здесь так же можно выделить теплоту и энтропию сольватации, теплоту и энтропию фазового превращения и энтропию смешения. В соответствии с этим, теплота И энтропия растворения полимеров в целом определяется суммой соответствующих изменений этих функций  [c.297]

    Рассмотрим фракционную перегонку двухкомпонентной жидкой смеси, не образующей азеотропного раствора, пользуясь диаграммой кипения (рис. 136). Для разделения исходную смесь состава X о нагревают при постоянном давлении до кипения (фигуративная точка Оо), при этом получается первый пузырек пара (фигуративная точка Ьо) состава Пар по сравнению с исходной жидкостью более богат легколетучим компонентом В, а раствор обогащается компонентом А и его температура кипения при подводе теплоты возрастает (фигуративная точка а ). В процессе перегонки состав жидкого раствора изменяется от Х до а состав пара — от Ко ДО Кх- Если весь полученный пар сконденсировать (первая фракция), то конденсат будет иметь состав У и промежуточный между Ко и У . При кипении оставшейся жидкости (фигуративная точка 04) состава Х1 получается пар, также обогащенный легколетучим компонентом В. При изменении состава жидкого раствора от Х1 до состав пара меняется от У г до У и получается конденсат состава У2 (вторая фракция). При дальнейшем испарении оставшейся жидкости аналогично можно получить третью, четвертую и т. д. фракцию, при этом кипящая жидкость по составу будет приближаться к чистому компоненту А с температурой кипения Т. Если каждую из полученных фракций подвергнуть аналогичной перегонке, то получится набор новых фракций, обогащенных легколетучим компонентом. Сходные по составу фракции объединяют и подвергают дальнейшему фракционированию до тех пор, пока конденсат не будет представлять собой практически чистый компонент В, а перегоняемая жидкость — чистый компонент А. [c.394]

    Влияние поверхности. Для физической адсорбции имеет значение лишь величина поверхности, но химическая адсорбция— весьма специфичный процесс. Так, например, водород хемосорби-руется не окисью алюминия, а никелем, и кислород не окисью магния, а углеродом. Такое поведение согласуется с предположением, что хемосорбция сходна в общем с химической реакцией. На хемосорбцию оказывают влияние физическое состояние поверхности и ее химический состав. Неоднородность поверхности катализаторов доказывается, например, тем, что теплота процесса постепенно снижается по мере протекания хемосорбции. Поверхность состоит из атомов различной степени насыщенности. Атомы у краев кристаллов, трещин и выступов, вероятно, менее насыщены и, следовательно, более активны. [c.206]


    Теплоты сходных процессов [c.25]

    Для определенного круга реакций можно теоретически вывести термодинамический критерий оптимального катализатора, с его помощью ориентировочно оценить ряд относительной каталитической активности и выделить таким путем вещества, активность которых целесообразно измерять на опыте в первую очередь. Если имеется возможность конкретизировать природу лимитирующей стадии ряда сходных процессов, протекающих на данном катализаторе, то, сопоставляя теплоты этих стадий, можно примерно оценить относительную реакционную способность различных веществ. Построение корреляционных зависимостей типа каталитическая активность — да (для данной реакции на ряде катализаторов) или реакционная способность — еь (для ряда сходных реакций на данном катализаторе) с использованием ограниченного числа экспериментальных кинетических данных позволяет методом интерполяции грубо оценивать абсолютную скорость для неизученных систем того же типа. Введением в данный катализатор добавок, приближающих величины д, к (д,)опт, можно сознательно повышать его активность аналогично введением в данную молекулу заместителей, снижающих еь, можно увеличивать ее реакционную способность (при условии, что не нарушается требование однотипности, не изменяется механизм процесса). Построение такого рода корреляционных зависимостей может служить также одним из методов отыскания рациональной классификации в катализе, поскольку оно позволяет выявлять однотипные системы. [c.372]

    Взаимосвязь между температурами кипения при постоянном давлении в рядах подобных соединений в общем случае выражается плавными кривыми. Если процесс испарения осложнен ассоциацией или диссоциацией в жидкой или паровой фазе, то кривые могут утратить правильность от изобары к изобаре меняется температура кипения, а с ней и степень ассоциации (диссоциации), что может привести к искажению кривых. Ход температур кипения в рядах сходных по составу неорганических соединений, как правило, весьма специфичен. То же наблюдается и для органических веществ если даже ограничиться галогенопроизводными, то трудно указать два ряда веществ, для которых закономерность в температурах кипения была бы количественно подобной. Это обусловлено неодинаковой для разных веществ интенсивностью влияния таких факторов, как тип связи, поляризуемость и т. д., к которым температура кипения весьма чувствительна. Изменение структуры также может сказаться на результатах, так как оно приведет к изменению энтропии вещества и тем самым к изменению теплоты испарения, а поэтому и зависимости температуры кипения от давления. Если же рассматривать два родственных гомологических ряда, то можно считать, что ход температур кипения в них от соединения к соединению количественно подобен, и будет справедливо приближенное уравнение [c.28]

    В нем при равных температурах сопоставляются значения теплот реакций или, в частности, теплот образования веществ (рис. 11.10). Для сходных веществ (процессов) А в (11.26) близко к единице. [c.92]

    Некоторые закономерности в изменении теплот образования. В ряду сходных веществ величины ДЯ меняются закономерно, поэтому закономерно изменяются и тепловые эффекты аналогичных процессов. [c.183]

    При смешении жидкостей, молекулы которых неполярны и сходны между собой по структуре и химическим связям, тепловые и объемные изменения очень малы. Например, для процесса образования раствора толуола и бензола ДЯ О и ДК 0. Если при образовании раствора двух жидкостей происходит лишь хаотическое распределение частиц без межчастичного взаимодействия, то теплота смешения равна нулю, а энтропия меняется лишь в результате изменения концентрации компонентов. [c.248]

    Идеальные растворы. При смешении жидкостей, молекулы которых неполярны и сходны между собой по структуре, химической связи и величине молекул, тепловые и объемные изменения очень малы. Например, такое наблюдается для процесса смещения толуола с бензолом. Если при смешении двух жидкостей происходит лишь хаотическое распределение частиц без изменения межчастичного взаимодействия, то теплота смешения равна нулю (ЛЯр=0), изменения объема системы не происходит (объем смешения тоже равен нулю АКр=0), энтропия растет лишь в результате выравнивания концентрации за счет диффузии. [c.167]

    Некоторые работы можно объединить по следующему признаку в них найдены соотношения, в которых сравниваются характеристики химического процесса с характеристиками фазового превращения в однокомпонентных или в многокомпонентных системах. К первым относятся взаимосвязи между температурой плавления окислов карбидообразующих металлов и температурой начала их восстановления углеродом [6.31], температурой плавления полупроводников и шириной запрещенной зоны [632, 633] (см. рис. 96), теплотой сублимации металлов и температурой заданной степени превращения [634] (см. также [400]), поверхностным натяжением и энергией решетки и энергией связи [149], температурой плавления и энергией решетки [635], электрической прочностью и теплотами сублимации [636], поверхностным натяжением и перенапряжением водорода [637] и ряд других (см., например, [36]). Ко вторым моншо отнести взаимосвязи между растворимостью в рядах сходных солей и энергией кристаллической решетки [638] и между растворимостью и сдвигом частот в спектрах [639]. [c.104]


    Темкин вывел уравнение для кинетики адсорбции на поверхности с равномерным распределением по энергиям активации и линейной зависимостью между энергией активации и теплотой адсорбции. Основываясь на том факте, что для многих сходных между собой реакций изменение энергии активации при переходе от одной реакции к другой составляет некоторую определенную долю теплового эффекта, Темкин предположил, что в процессе адсорбции имеет место подобная же закономерность и что энергия активации падает с ростом теплоты адсорбции по закону [c.217]

    При эндотермической реакции тепло, необходимое для ее осуществления в адиабатических условиях , аккумулируется сырьевой смесью до начала реакции. В процессе реакции тепло расходуется и температура смеси на выходе значительно ниже, чем на входе в реактор. При экзотермической реакции, наоборот, сырье имеет на входе минимальную допустимую температуру, а затем нагревается за счет теплоты реакции. Здесь температура на выходе выше, чем на входе. Теплоизолированные системы, применяющие теплоагенты смешения, сходны с адиабатическими, в которых все тепло процесса аккумулируется продуктами реакции, Назначение теплоносителя в [c.47]

    Хотя при накаливании СО распадается, но при обыкновенной температуре СО есть вещество очень прочное. Тем замечательнее разложение углекислого газа, производимое растениями в этом случае весь кислород углекислого газа выделяется в свободном виде. Механизм этого разложения состоит в том, что поглощаемые растениями теплота и свет расходуются на разложение углекислого газа. Этим объясняется общеизвестное. громадное влияние температуры и света на произрастание растений. Но в чем именно, из каких отдельных промежуточных реакций состоит весь процесс распадения СО в растениях на кислород и на остающиеся в растениях гидраты углерода (доп. 222) — поныне неясно. Известно, что сернистый газ 50 , во многом сходный с углекислым СО , от действия света (как и от накаливания) дает серу и серный ангидрид 50 , а в присутствии воды серную кислоту, но для СО прямо не получено подобного распадения, тем более, что СО образует лишь очень легко разлагающуюся свою высшую степень окисления (надугольную кислоту [259]). Оттого-то, быть может, кислород здесь и выделяется. С другой стороны, известно, что в растениях всегда образуются и содержатся органические кислоты, а они должны быть рассматриваемы как производные углекислоты, что видно по всем их реакциям, которые вслед за этим мы кратко рассмотрим. Поэтому можно думать, что углекислота, поглощаясь растениями, сперва образует в них (по Байеру муравьиный алдегид [c.278]

    Плоскость, сфера, цилиндр. 1. Влияние примеси. Как уже отмечалось, теплоперенос и диффузия вещества описываются одинаковыми дифференциальными уравнениями (9.1) и (9.36), решения которых должны удовлетворять сходным граничным условиям (9.3), (9.4), (9.37) и (9.38). До сих пор в задачах рассматривался только один из двух процессов переноса. При исследовании направленной кристаллизации считалось, что кристалл растет из чистого расплава. При решении же задачи о кристаллизации цилиндра из пересыщенного раствора тепловые эффекты не учитывались. Но, как показал Франк [54], характер роста может определяться совместным действием обоих процессов переноса. В частности, расплав, из которого растет кристалл, может содержать примесь в таком количестве, что она, накапливаясь на фронте кристаллизации, приведет к снижению на нем температуры плавления. При кристаллизации из раствора температура у фронта роста может из-за выделения теплоты кристаллизации повыситься настолько, что равновесная концентрация там изменится. При одновременном учете обоих процессов значения температуры и концентрации, входящие в граничные условия, меняются, хотя форма граничных условий остается прежней. Уравнения переноса также сохраняют свой вид, [c.398]

    Эта экзотермическая реакция осуществляется в виде непрерывного процесса по схеме производства, сходной со схемой гидратации ацетилена (рис. 97), при давлении 5 ат. В реакционной колонне раствор кипит за счет теплоты реакции после конденсации паров полученный водный раствор альдегида направляют на ректификацию, а непрореагировавший этилен и кислород смешивают со свежей смесью этих газов в колонну подается также вода взамен испарившейся. [c.279]

    Рис. 2 дает более наглядную картину этой связи. Хемосорбированный этилен реагирует с хемосорбированньш водородом, образуя этан. Это впервые было установлено при хемосорбции дейтерия на металлическом никеле, последующем добавлении этилена и, наконец, выделении дейтери-рованного этана с поверхности. Сходные процессы происходят с пропиленом и бутеном-1, которые гидрируются, а также показывают наличие размыкания двойной связи под влиянием катализатора при относительно низких температурах. Последнее явление проявляется также в элементарных этапах циклизации октена с образованием смеси 1,3-и 1,4-диметил-цнклогексанов. Во всех этих случаях подтверждается факт хемосорбции молекул олефинов со значением теплот адсорбции порядка 50—100 ккал в зависимости от природы о.лефина и металла. [c.33]

    Синтез-газ после очистки от сероводорода и двуокиси углерода сжимается в компрессоре до давления 300 ат, смешивается с циркуляционным газом, нагревается в трубчатом теплообменнике продуктами реакции, выходящими из колонны синтеза, и проходит через слой катализатора, заполняющий колонну синтеза, сходную по конструкции с колонной синтеза аммиака. Вследствие использования теплоты реакции процесс протекает автотермично. Газовая [c.256]

    В катализе сходным образом действует увеличение времени жизни ассоциативных комплексов, образованных с катализатором промежуточными или исходными веществами или продуктами реакции. В уменьшении таких задержек заключается основной смысл оптимальных энергий активации и оптимальных теплот адсорбции в катализе. А. А. Баландин развил эту идею дальше в виде принципа энергетического соответствия мультиплетной теории [82]. Однако в наиболее характерных случаях кибернетического катализа механизм значительно сложнее. В частности, стадии, решающие для осуществления кибернетических функций (сопряжение процессов и регулирование тонкого строения продуктов реакции), сравнительно редко контролируют скорость суммарного процесса, поэтому усиленное внимание стадиям, контролирующим скорость слитного процесса, иногда в сложном катализе бывает мало оправданно. [c.304]

    Такой процесс (сходный с о бразованием эндотермических соединений) иллюстрируется рис. 12. Однажды образовавшись, эндотермическая поверхностная молекула может существовать некоторое время, не диссоциируя. Этого времени бывает достаточно для того, чтобы она успела прореагировать с другими молекулами. При многих каталитических процессах цодобные эндотермические поверхностные соединения являются промежуточными продуктами. Имеются основания считать, что такая эндотермическая хемосорбция играет довольно важную роль в катализе. Время жизни (о длительности адсор бции см. раздел VII, 4) эндотермических поверхностных соединений определяется теплотой десорбции (разность между уровнями и 5), которая в данном случае меньше, чем теплота активации (разность между уровнями А и 5). Различные возможные случаи эндотермической хемосорбции рассматриваются в разделах V, 9, VI, 3 — 5 и X, 4. [c.58]

    Повседневный опыт показывает, что в окружающем нас мире многие процессы протекают сами собой , когда система предоставлена сама себе без внешних воздействий. Эти процессы называют самопроизвольными или положительными. Например, сток воды по склонам, распространение газов из области более высокого давления в область более низкого давления, переход теплоты от горячего тела к холодному, возникновение теплоты за счет затраченной работы, взаимная диффузия веществ. Эти и все другие естественные процессы сходны в одном отношении они приводят различные системы к конечному состоянию равновесия или покоя и можно считать, что эти системы в известной степени теряют свою способность к самопроизвольному изменению в дальнейшем. В изолированной системе, где имеют место процессы такого рода, общее количество энергии, конечно, не меняется, а изменяется как бы ее качество, поскольку уменьщается способность системы к восприя- [c.91]

    Каталитический риформинг [1, 6, 16]. При рифор-минге легкие нефтяные фракции изомеризуются на катализаторе типа М0О2, СГ2О3, Р1 на АЬОз и т. п. с образованием бензина. Процесс эндотермичен и сопровождается отложением кокса на катализаторе. Кокс выжигают в регенераторе, а теплоту используют для поддержания процесса в реакторе. Схемы установок риформинга и крекинга сходны. Отличие состоит в том, что риформинг осуществляют при повышенном давлении (до 2 МПа) и [c.267]

    В результате рассуждений и расчетов, отчасти отраженных в гл. IV, посвященной проблеме сольватации, мы пришли к заключению, что при выборе пары ионов, п. м. теплоемкости или энтропии которых можно считать приближенно равными, нельзя опираться на како11-либо один признак близость кристаллохимических радиусов или равенство теплот гидратации, как это пытались делать и мы в процессе анализа опытных данных. Как мы видели выше (гл. IV), само содержание понятия равенство радиусов двух ионов зависит от того, в связи с каким явлением оно рассматривается. Так, например, при модельных расчетах теплот сольватации оказалось необходимым учитывать асимметрию диполя воды (0,25)А, добавляя эту величину к кристаллохимическим радиусам катионов и вычитая ее из в случае аниона. С этой точки зрения радиусы пар и СГ, КН и СГ и С8+ и Г в водных растворах близки друг к другу, и использование наиболее сходной в этом отношении пары Сз и Г, [c.222]

    Среди сополимеров этого класса процесс плавления в наибольшей степени исследован для сополимеров пропилена. Ключевой проблемой является разделение эффектов, обусловленных конфигурационной неоднородностью повторяющихся звеньев, т.е. стерической структуры (разд. 1.5), и эффектов, связанных с химическо-й неоднородностью повторяющихся звеньев сополимера (т.е. конституционных дефектов [ 94]). Кавалло и др. [ 23] исследовали эти вопросы на примере образцов изотактического поли(пропилен-со-бутена-1). Как следует из рис. 2.42, исходные гомополимеры имеют аналогичную кристаллическую структуру. Сополимеры остаются кристаллическими во всей области концентраций, причем минимальная теплота плавления наблюдается при содержании бутена-1 45 мол. % (это значение теплоты плавления составляет 1/3 того значения, которого можно было бы ожидать из условия аддитивности). При увеличении концентрации сомономерных звеньев параметры решетки основного компонента изменяются непрерывно. В области средних составов одновременно сосуществует кристаллическая структура обоих компонентов (парамет-ры кристаллических решеток в области средних составов сходны, см. рис. 2.61). Монокристаллы достаточно совершенной морфологии удается получить при кристаллизации раствора только для сополимера с достаточно низкой концентрацией сомономерных звеньев. Температура растворения таких кристаллов показана на рис. 10.13 (кривая 1). Минимум на этой кривой соответствует 40 мол. % бутена-1. При плавлении этих кристаллов для многих составов наблюдаются мультиплетные пики плавления, аналогичные часто наблюдаемым мультиплетным пи- [c.396]


Смотреть страницы где упоминается термин Теплоты сходных процессов: [c.152]    [c.52]    [c.69]    [c.73]    [c.52]    [c.52]    [c.83]    [c.19]    [c.657]    [c.200]    [c.134]    [c.212]    [c.262]    [c.82]   
Смотреть главы в:

Введение в теорию химических процессов -> Теплоты сходных процессов




ПОИСК





Смотрите так же термины и статьи:

Теплота процесса



© 2024 chem21.info Реклама на сайте