Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл поглощение света

    Поскольку исходным процессом фотосинтеза является поглощение света хлорофиллом, приближенно фотосинтез можно представить в виде следующей схемы. [c.177]

    В действительности такое положение является необходимым следствием квантовой природы действующего света. Поглощение света данной молекулой хлорофилла не происходит непрерывным потоком кванты света, падающие подобно капля.м дождя, поглощаются все время разными молекулами хлорофилла. [c.178]


    ЛИШЬ при действии довольно жесткого ультрафиолетового излучения с длиной волны меньше 300 нм. Наоборот, вещества, которые могут поглощать световую энергию, окрашены. Например, хлорофилл— сложная органическая молекула, ответственная за поглощение света при фотосинтезе, имеет ярко-зеленую окраску, что соответствует поглощению света в видимой области. На рис. 1.07 представлен спектр поглощения хлорофилла. [c.369]

    Для образования одной молекулы глюкозы, согласно этому уравнению, 24 раза должно произойти поглощение света хлорофиллом, и каждый раз хлорофилл отдает свой возбужденный электрон на восстановление СОг. Отдав свой электрон, хлорофилл приобретает свойства окислителя и стремится получить электрон обратно. Получает он электрон от молекулы воды с помощью сложной цепочки реакций, рассматриваемых в специальных курсах биохимии. Итоговое уравнение этой цепочки можно записать [c.370]

    Процесс поглощения света зелеными листьями растений осуществляется при непосредственном участии природного фотокатализатора хлорофилла — сложного магнийорганического соединения, придающего зеленую окраску листьям растений. [c.181]

    Мембранные системы в хлоропласте состоят из ряда уплощенных мешков, которые наслаиваются друг на друга в виде стопок, образуя так называемую грану (рис. 8.8). Электроны могут направленно переноситься с одной стороны мембраны на другую так, что кислород выделяется внутри, а процесс восстановления происходит снаружи. Число молекул хлорофилла в каждом хлоропласте прямо зависит от величины поверхности мембран и составляет приблизительно 10 хлорофилльных молекул на хлоропласт. По-видимому, молекулы пигментов (преимущественно хлорофилла) должны распределяться в виде монослоев по поверхности мембран, создавая максимальную площадь поверхности пигмента для поглощения света и переноса энергии к особым участкам мембраны. Эксперименты с импульсным освещением показали, что скорость выделения кислорода у растений возрастает с ростом интенсивности света до определенного предела, соответствующего возбуждению одной из каждых 300 молекул пигмента. Однако этот результат не означает, что другие пигментные молекулы всегда неактивны, потому что квантовые выходы, измеренные при низких [c.232]

    Молекулы хлорофилла представляют собой хромофоры, с помощью которых поглощается свет. В фотосинтезирующих организмах могут содержаться два и более типов молекул хлорофилла. В зеленых растениях содержатся хлорофиллы а и й, структура которых показана на рис. 63. Поглощение света в видимой области спектра обусловлено наличием сильно сопряженной порфири-новой системы. Как видно из рис. 64, хлорофилл поглощает свет наиболее интенсивно в синей и красной областях спектра, но отражает зеленый, желтый и оранжевый свет. Этим определяется характерный зеленый цвет растений. [c.162]


    Один из законов фотохимии, установленный Гротгусом в 1818 г., формулируется следующим образом лишь поглощенный свет является фотохимически активным. Отсюда следует, что в системе, проявляющей фотохимическую активность под действием видимого света, должно присутствовать окрашенное вещество. В процессе естественного фотосинтеза таким веществом является хлорофилл. [c.563]

    Нередко электронное возбуждение одного хромофора вызывает флуоресценцию другого хромофора, расположенного поблизости. Так, например, возбуждение молекул красителя, образующих монослой, приводит к флуоресценции слоя другого красителя, находящегося от первого на расстоянии 5 нм. Возбуждение остатков тирозина в белках может вызвать флуоресценцию триптофана, а возбуждение триптофана— флуоресценцию красителя, связанного с поверхностью молекулы белка, или флуоресценцию связанного кофермента [57]. Такого рода резонансный перенос энергии характерен для тех случаев, когда спектр флуоресценции одной молекулы перекрывается со спектром поглощения другой. При этом реального испускания и поглощения света не происходит, а имеет место безызлучательный перенос энергии. Резонансный перенос энергии имеет большое биологическое значение для фотосинтеза. Поскольку молекула с е = 3-10 при воздействии прямого солнечного света поглощает около 12 квантов света в секунду, моно-молекулярный слой хлорофилла будет поглощать всего 1 % общего числа квантов, падающих на поверхность листа [63]. По этой причине молекулы хлорофилла располагаются в виде многочисленных тонких слоев внутри хлоропластов. Однако непосредственно в реакционных центрах, где идут фотохимические процессы, находится лишь небольшое число специализированных молекул хлорофилла. Остальные молекулы поглощают свет и передают энергию в реакционный центр небольшими порциями. [c.31]

    Эта энергия активации эквивалентна излучению с длиной волны 230 нм или менее Такого коротковолнового излучения в солнечном свете, который достигает земной поверхности, не существует. Однако хлорофилл действует как фотосенсибилизатор, поглощая видимый свет и делая его пригодным для фотосинтеза в растениях. Но в этой реакции имеется нечто специфичное. Красный свет вызовет реакцию, но красному свету соответствует только 40 ккал/моль, а для того, чтобы вызвать реакцию, требуется более 112 ккал/моль. По-видимому, реакция протекает по стадиям. Лабораторные эксперименты с альгой (водоросль) показали, что обычно требуется около восьми фотонов на каждую использованную молекулу двуокиси углерода и каждую молекулу кислорода, вовлеченную при благоприятных условиях в фотосинтез с низкой интенсивностью света., Упражнение 18.1. Показать, что, если при фотосинтезе восемь фотонов поглощенного света с длиной волны 600 нм дают одну молекулу продукта реакции, который имеет теплоту сгорания 112 ккал/моль, эффективность превращения поглощенного света в аккумулированную химическую энергию составляет 30%. [c.557]

    На первой стадии гидрирования порфирины насыщают водородом одну Ср—Ср-связь и превращаются в хлорины. Для хлоринов в отличие от ЭСП порфиринов с относительно слабым поглощением квантов света в красной части спектра характерна интенсивная полоса в области 660—720 нм. Именно с этим свойством связано то, что хлорофилл (а) зеленых растений является хлорином, а не порфином. Его хлориновая структура обеспечивает предельно сильное поглощение света в красной части видимого спектра и обеспечивает фотосинтез энергией Солнца даже в самых неблагоприятных природных условиях. [c.688]

Рис. 5.3. Спектры поглощения света хлорофиллом а (/) и хлорофиллом 6 (II) Рис. 5.3. <a href="/info/427341">Спектры поглощения света</a> хлорофиллом а (/) и хлорофиллом 6 (II)
Рис. 5.4. Спектры поглощения света хлорофиллом с (I) и хлорофиллом с1 (//) Рис. 5.4. <a href="/info/427341">Спектры поглощения света</a> хлорофиллом с (I) и хлорофиллом с1 (//)
    Защитный механизм против избыточного поглощения света. Размеры антенны в хлоропластах позволяют транспорту электронов идти с полной скоростью даже в облачный день. Очевидно, в условиях яркого освещения (на ярком солнечном свету) может поглощаться гораздо больше квантов, чем способен использовать реакционный центр. Избыток энергии возбужденного хлорофилла может удаляться различными путями. Один из них включает внутрисистемный переход с образованием более дол- [c.337]

    Фотосистема I. Первичный акцептор X, который получает электроны от Р-700 (хлорофилла а ), был идентифицирован по изменениям поглощения света. Его назвали Р-430 и считают, что он является белком, содержащим железо и серу. Донор V представляет собой медьсодержащий белок пластоцианин, который поставляет электроны для восстановления окисленного катион-радикала хлорофилла а.  [c.345]


    Энергия света, поглощенная хлорофиллом и другими пигментами, может запасаться, мигрировать от молекулы одного пигмента к молекуле другого и между тождественными молекулами, излучаться (флуоресценция и фосфоресценция) и рассеиваться, превращаясь в тепло. Во всех случаях первичный акт фотохимического процесса состоит в поглощении света. По-видимому, одна из функций вспомогательных пигментов состоит в снабжении энергией хлорофилла а. [c.451]

    Этот тетрапиррольный цикл фигурирует в уже упомянутых кобамидных ферментах и в кобаламине, в простетических группах ряда важнейших белков и в хлорофилле. Структура хлорофилла, ответственного за поглощение света — первичный процесс фотосинтеза, показана на рис. 2,14. Хлорофилл — координационное соединение магния, атом которого занимает центральное положение в плоском порфириновом цикле. [c.98]

    Механизм защитного действия каротиноидов у фотосинтезирующих организмов заключается в следующем (рис. 88). Молекула хлорофилла, поглотившая свет, быстро (10 с) переносит энергию синглетного возбужденного состояния в реакционный центр. Из Ю поглощенных квантов света приблизительно 4 приводят к переходу молекулы хлорофилла в возбужденное триплетное состояние. Возникает возможность фотодинамического поражения. Каротиноиды могут участвовать в трех защитных реакциях 1) непосредственно тушить триплетное состояние хлорофилла, переводя его в основное состояние (рис. 88, А) возникающая при этом триплетная молекула каротиноида отдает избыточную энергию в виде тепла и возвращается в основное состояние 2) триплетный хлорофилл не гасится каротиноидами происходит его взаимодействие с О2, переводящее последний в возбужденное синглетное состояние синглетный кислород гасится каротиноидами (рис. 88, Б) 3) синглетный кислород, не подвергшийся гашению каротиноидами по физическому механизму, может взаимодействовать с ними в химической реакции, приводящей к окислению каротиноидов. Участие каротиноидов в любой из трех описанных выше реакций будет снижать уровень образования в клетке 0 . [c.339]

    Данные пигменты обеспечивают в клетках цианобактерий поглощение света в области 450-700 нм с эффективностью более 90% и передают свет на хлорофилл. [c.189]

    Флуоресценцией называется излучение, которое наблюдается одновременно с поглощением света. Флуоресцентное излучение всегда имеет длину волны большую, чем поглощаемое излучение. Хорошо известный пример — флуоресценция хлорофилла в воде. Общепринятая теория эффекта [20, 46] основана на представлении [c.108]

    В процессе поглощения света зелеными листьями растений основная роль принадлежит хлорофиллу — зеленому веществу листа, который способен к интенсивному поглощению электромагнитных колебаний в области красной части спектра. [c.165]

    В высших растениях фотосинтез протекает наиболее эффективно при поглощении света хлорофиллом а. Роль хлорофилла Ь, каротиноидов и других сопутствующих пигментов не вполне ясна. Хлорофилл а представляет собой единственный пигмент, общий для всех фотосинтезирующих организмов. Поэтому предполагают, что только хлорофилл а способен быть донором энергии непосредственно для фотосинтетической реакции, а все другие пигменты передают поглощенную ими энергию хлорофиллу а. Эта гипотеза согласуется со спектром действия для фотосинтеза и с наблюдением, что сопутствующие пигменты могут сенсибилизировать флуоресценцию [c.258]

    В этом механизме основная реакция заключается в том, что поглощенный свет переводит электрон в молекуле хлорофилла на более высокий энергетический уровень, вследствие чего электрон выбрасывается, а хлорофилл, потеряв электрон, переходит в окисленное состояние. Отделившийся электрон может вернуться к окисленному хлорофиллу. [c.270]

    На фиг. 67 приводится упрощенная схема энергетических уровней молекулы хлорофилла. Поглощение света в коротковолновой (сине-фиолетовой) области спектра приводит к появлению электрона на втором синглетном уровне 5. При поглощении квантов красного света происходит переход электронов с основного 5о уровня на первый синглетный 8. Электроны с 8 уровня быстро падают на 8, что сопровождается потерей части энергии на тепловую диссипа- [c.143]

    Важным примером делокализации и поглощения энергии является хлорофилл, который обсуждался в послесловии к гл. 20. Ароматическое кольцо, окружающее ион Mg , представляет собой протяженную делокализо-ванную систему, образуемую порфирином (см. рис. 20-19). Электронные энергетические уровни этой системы обусловливают поглощение света с одним максимумом в фиолетовой области, при 430 нм, и вторым максимумом в красной области, при 690 нм (см. рис. 20-22). При поглощении света молекулой хлорофилла ее электрон возбуждается на более высокий уровень это позволяет хлорофиллу восстанавливать ионы Ге " в ферре-доксине, белке с молекулярной массой 13000, который содержит два атома железа, координированные к сере. Последующее окисление ферредоксина служит источником энергии для протекания других реакций, которые в конце концов приводят к расщеплению воды, восстановлению диоксида углерода и, наконец, к синтезу глюкозы, С НиОв. [c.307]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    В колориметрии измеряют интенсивность света, прошедшего через окрашенный раствор и являющегося дополнительным к поглощенному свету. Например, раствор, поглощающий лучи красного цвета, окрашен в дополнительный к нему сине-зеленый цвет, как это установил К. А. Тимирязев для растворов хлорофилла. Раствор, поглощающий желто-зеленые лучи, окрашен в фиолетовый цвет, например раствор KMnOi. Раствор, поглощающий желтые лучи, окрашен в синий цвет, например раствор аммиачного комплекса меди. Дополнительные цвета при смешении их с основными дают белый (ахроматический) цвет. [c.460]

    X. Гаффрон и К. Воль, а также Л. Дёйсенс в 1936-52 на основе количеств, измерений выхода продуктов Ф. поглощенного света и содержания хлорофилла сформулировали представление о фотосинтетич. единице - ансамбле молекул пигмента, осуществляющих светосбор и обслуживающих фотохим. центр. [c.179]

    Этот сложный многостадийный процесс требует большого количества энергии (467 кДж/моль СОг) и осуществляется с помощью фотосин-тетическнх пигментов (хлорофиллов и др.). Фотосинтетические пигменты обеспечивают поглощение света, часть энергии которого идет на образование восстановителя, а часть энергии переводится в форму, более удобную для использования в биосинтезе. [c.326]

    Реакционный центр I. Пигмент реакционного центра фотосистемы I характеризуется изменениями поглощения света, главным образом при 700 нм, которые выявляются в спектре иосле освещения хлоропластов вспыщками света. Он известен как хлорофилл аг, или пмгмент Р-700, и представляет собой [c.339]

    Реакционный центр П. Пигмент реакционного центра П представляет собой также комплекс хлорофилла с белком, содержащий димер хлорофилла а, известный как хлорофилл ац, или Р-680. Хотя иной характер поглощения света этим пигментом указывает на то, что молекулы хлорофилла а находятся здесь в другом молекулярном окружении или по-иному ориентированы, чем в случае пигмента Р-700, процессы поглощения света и окисления, происходящие в реакционном центре П, сходны с аналогичными процессами в реакционном центре I. Здесь также энергия электронного возбуждения передается с хлорофилла антенны на хлорофилл ац, который подвергается возбуждению с последующим окислением до катион-па хикала и делокализацией неспаренного электрона. В этом случае электрон передается на первичный акцептор электрона фотосистемы И р (Х-320). Затем катион-радикал хлорофилла йц восстанавливается, получая электрон от донора Z. Таким образом, фотосистема П эффективно переносит электроны от 2 на Р (рис. 10.10). [c.341]

    Фотосистема II. Первичный акцептор Р фотосистемы П, для которого характерны изменения поглощения света при 320 нм, по-видимому, является прочносвязанной формой пластохинона (10.8). Эта форма отличается от основной формы пластохинона — одного из последующих компонентов в цепи переноса электрона. С акцептором Р тесно связан неидентифицированный компонент С-550, имеющий максимум поглощения при 550 нм. Донор 2, который поставляет электроны для восстановления хлорофилла ап (Р-680), также неидентифицирован. Предполагают, что он прочно связан с марганцем или цитохромом 559. [c.345]

    Благодаря присутствию во внешней среде СОг оказался возможным фотосинтез. Бактериальный фотосинтез, а затем и фотосинтез зеленых растений развивались примерно 3—2 10 лет назад. Фотосинтез состоит в поглощении света и преобразовании его энергии в химическую энергию биологических молекул. Для этого потребовались поглощающие свет соединения, в частности, содержащие порфириновые циклы — хлорофилл и цитохромы. В результате поглощения квантов света в хлорофилле электроны системы переходят на более высокие уровни энергии. Далее работает цепь переноса электронов, главными участниками которой являются окислительно-восстановительные ферменты — цитохромы. Запасенная первоначально в хлорофилле энергия выделяется в биологически полезной форме — в АТФ и НАДФ. Происходит фотофосфорилирование. [c.53]

    Эубактерий, фотосинтез которых сопровождается выделением молекулярного кислорода (цианобактерии и прохлорофиты), содержат хлорофиллы, характерные для фотосинтезирующих эукариотных организмов. У цианобактерии — это хлорофилл а, единственный вид хлорофилла, обнаруженный в этой фуппе в клетках прохлорофит — хлорофиллы й и А. Присутствие этих пигментов обеспечивает поглощение света до 750 нм. [c.266]

    Фикобилипротеины обеспечивают в клетках цианобактерий поглощение света в области 450—700 нм и с высокой эффективностью (больше 90 %) передают поглощенный свет на хлорофилл, при этом основное количество энергии передается на хлорофилл, связанный со II фотосистемой. Все цианобактерии содержат небольшие количества аллофикоцианина и его длинноволновой формы — аллофикоцианина В, а также значительные количества фикоцианина, одного из основных клеточных пигментов, содержание которого в условиях низкой освещенности может достигать 60% от общего уровня растворимых белков клетки. Некоторые цианобактерии содержат также второй основной фикобилипротеин — фикоэритрин. Способность синтезировать фикоэритрин может быть конститутивным свойством организма или индуцироваться в определенных условиях освещения. [c.268]

    К прокариотам, фотосинтез у которых сопровождается выделением О2, относятся цианобактерии (сине-зеленые водоросли) и про-хлорофиты. Цианобактерии (сине-зеленые водоросли) содержат хлорофиллы а . Прохлорофиты подобно эукариотам содержат хлорофиллы > и Ь . Эти пигменты обеспечивают поглощение света до 750 нм. [c.188]

    Зеленые ткани растений своей окраской обязаны фотосинтетическому пигменту хлорофиллу, который в высоких концентрациях содержится в хлоропла-стах. Поглощение света хлорофиллом запускает в хлоропластах процессы переноса электронов, которые сопряжены с переносом протонов через мембраны тилакоидов и, как следствие, с запасанием энергии в биологически полезной форме (в виде молекул АТР) и восстановительных эквивалентов (в виде NADPH). Полученные таким путем АТР и ШОРН в свою очередь используются хлоропластами для превращения СО2 в сахара (см. гл. 9). При этом синтетическая активность хлоропластов такова, что позволяет фотосинтезирующим тканям экспортировать большие количества органических веществ во все остальные части растения. Эти вещества в основном представлены дисахаридом сахарозой, поэтому жидкость, заполняющая ситовидные трубки (флоэмный сок) содержит обычно от 10 до 25% сахарозы [c.178]


Смотреть страницы где упоминается термин Хлорофилл поглощение света: [c.17]    [c.135]    [c.231]    [c.340]    [c.633]    [c.165]    [c.50]    [c.448]    [c.450]    [c.363]    [c.47]    [c.633]    [c.542]   
Биохимия Том 3 (1980) -- [ c.31 , c.40 , c.42 ]

Фотосинтез Том 2 (1953) -- [ c.9 , c.21 , c.36 , c.64 , c.104 , c.113 , c.128 , c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорофилл

Хлорофилл хлорофилл



© 2025 chem21.info Реклама на сайте