Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система молекулярно-дисперсные

Рис. 4. Зависимость удельной поверхности систем от размера ее частиц 1 - молекулярно-дисперсные системы 2 - коллоидные системы Рис. 4. Зависимость <a href="/info/3857">удельной поверхности</a> систем от <a href="/info/117814">размера</a> ее частиц 1 - молекулярно-дисперсные системы 2 - коллоидные системы

    Вначале гипсометрический закон Лапласа был выведен для молекулярно-дисперсных газообразных систем. Позднее Перрен распространил этот закон на коллоидно-дисперсные и даже на грубодисперсные системы. Работая с эмульсиями гуммигута и мастики в воде, Перрен обнаружил, что на каждые 30 мкм изменения высоты столба суспензии число частиц гуммигута изменилось в два раза, т. е. точно по формуле Лапласа. Подсчитывая число частиц на разных глубинах, можно вычислить число Авогадро N0. [c.308]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    Если в системе силы тяжести полностью уравновешены силами диффузии, наступает так называемое седиментационное равновесие, которое характеризуется равенством скоростей седиментации и диффузии. При этом через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком. Седиментационное равновесие наблюдается не только в коллоидных растворах, но и в молекулярно-дисперсных системах. Это равновесие характеризуется постепенным уменьшением концентрации частиц в направлении от нижних слоев к верхним. Распределение частиц в зависимости от высоты столба жидкости подчиняется гипсометрическому (или барометрическому) закону Лапласа в применении к золям при [c.307]


    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]

    Коллоидные системы представляют собой частный вид дисперсных систем. К коллоидным относятся системы со сравнительно высокой степенью дисперсности размер частиц составляет от 10 до 2000 А. Таким образом, коллоидные системы по степени дисперсности частиц должны быть помещены между грубодисперсными системами и молекулярно-дисперсными, т. е. истинными растворами (в последних растворенное вещество находится в растворителе в виде отдельных молекул или ионов). В коллоидных системах частицы не могут быть обнаружены с помощью обычного микроскопа. Таким образом, коллоидные системы являются системами гетерогенными (точнее — микрогетерогенными), так как частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Вследствие малого размера частиц общая поверхность их в коллоидных системах очень велика и составляет десятки, сотни и тысячи квадратных метров на грамм дисперсной фазы. Очень сильное развитие этой поверхности раздела и обусловливает особенности в свойствах, присущие коллоидным системам. [c.504]

    Рассмотрим изменение энергии Гиббса в процессе мицеллообразования. Пусть в начальный момент система молекулярно дисперсна и содержит. V, мономеров сорта I с химическим потенциалом и, (/=1, 2...). Ее энергия Гиббса дается выражением  [c.98]

    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]

    Рассмотренные системы — грубодисперсная, коллоидно-дисперсная и молекулярно-дисперсная — различаются прежде всего степенью дисперсности. [c.14]

    Диффузия в коллоидных системах. Диффузией в растворах называется естественный процесс, ведущий к равномерному распределению растворенного вещества по всему объему раствора. Растворенное вещество всегда стремится двигаться от мест с большей концентрацией к местам с меньшей концентрацией. Это явление свойственно как истинным, так и коллоидным растворам. Однако скорость этого процесса (скорость диффузии) в коллоидных растворах во много раз меньше, чем в молекулярно-дисперсных растворах. [c.511]

    Коллоидные системы занимают по степени дисперсности промежуточное место между грубодисперсными системами и молекулярно-дисперсными, поэтому и получать их можно из грубого материала путем достаточного его раздробления дисперсионные методы) или, наоборот, из более мелких частиц — молекул, ионов или атомов, вызывая их соединение (конденсацию) до частиц требуемых размеров конденсационные методы). [c.528]

    К первой группе относится большой класс растворимых в воде дифильных органических соединений с небольшим углеводородным радикалом, например низшие спирты, фенолы, кислоты и их соли, амины. Вещества этого типа находятся в растворе в молекулярно-дисперсном состоянии вплоть до концентраций, соответствующих их истинной растворимости и разделению системы на две сплошные фазы. [c.290]


    Растворы полимерных соединений представляют собой термо динамически устойчивые системы, что связано с молекулярно-дисперсным состоянием компонентов раствора. Следовательно, в истинных растворах полимеров последние диспергированы до молекулярного состояния. Однако для растворов высокомолекулярных, как и низкомолекулярных соединений характерна ассоциация. молекул. Отдельные сегменты гибких и очень длинных макромолекул полимеров могут входить одновременно в состав нескольких ассоциатов. Как и в растворах низкомолекулярных веществ, ассоциаты полимерных молекул находятся в непрерывном состоянии образования и разрушения. Продолжительность изменения ассоциатов высокомолекулярных молекул значительно больше, чем для ннзкомолекулярных веществ, что объясняется большей громоздкостью молекул. [c.63]

    Размеры коллоидных частиц колеблются в пределах 1-100 нм. Дальнейшее измельчение дисперсной фазы приводит к переходу высокодисперсной коллоидной системы в молекулярно-дисперсную, приближающуюся по свойствам к истинным растворам. Наличие частиц с размерами более 0,1 мкм (Ю см) характерно для микро-гетерогенных и грубодисперсных систем, уже не считающихся коллоидными, но совпадающих по некоторым свойствам с коллоидными дисперсиями. [c.22]

    Благодаря работам советских и зарубежных ученых было установлено, что коллоидные системы, известные ранее под названием лиофильных золей, на самом деле являются не золями, а истинными растворами высокомолекулярных соединений (ВМС), т. е. гомогенными системами молекулярно- или ионно-дисперсными. В растворах этих соединений взвешенными частицами являются не мицеллы (как в случае лиофобных коллоидов), а гигантских размеров макромолекулы, молекулярный вес которых превосходит 10 ООО, а в отдельных случаях превосходит даже несколько миллионов (опыт 86). [c.175]

    Коалесценция частиц дисперсной фазы приводит к изменению дисперсности системы. Устойчивость к процессам коалесценции и коагуляции в реальных нефтяных дисперсных системах различна. Для рассмотрения механизмов образования элементов дисперсной фазы в нефтяных дисперсных системах удобно рассмотреть надмолекулярные структуры в системе, а может быть и частицы дисперсной фазы, состоящие из смолисто-асфальтеновых веществ или высокомолекулярных парафиновых углеводородов, в виде жестких тел с малыми размерами, определенной формы и некоторым запасом поверхностной энергии, способствующей взаимодействию этих тел, с образованием пространственных структур наивыгоднейшей конфигурации, то есть наиболее компактных и с минимально возможным объемом. При пониженных температурах этот процесс приводит в конечном итоге к образованию упорядоченной кристаллической структуры. При повышенных температурах, вследствии дезорганизующего воздействия теплового движения, устанавливается лишь частичное равновесие сосуществующих в системе молекулярных или надмолекулярных группировок конечных размеров, имеющих сходную ориентацию. Подобные группировки в нефтяных дисперсных системах отличаются расплывчатыми границами, образованными переходным сольватным слоем. Определение размеров элементарных группировок в нефтяных дисперсных системах является достаточно сложной задачей, не решенной окончательно до последнего времени. [c.56]

    Исследование броуновского движения и диффузии в коллоидных системах не только дало многое для понимания природы дисперсных систем и установления общности молекулярно-кинетических свойств этих систем и систем молекулярной дисперсности, но и явилось доказательством правильности молекулярно-кинетиче-ской теории в целом. Теория броуновского движения, созданная Эйнштейном и Смолуховским, подтвердила реальное существование молекул как раз в то время, когда по этому вопросу развернулась ожесточенная дискуссия, поднятая Вильгельмом Оствальдом и другими представителями энергетической школы, советовавшими избегать пользоваться понятиями атома и молекулы, поскольку, по их мнению, за этими слонами не кроется объективная реальность. [c.65]

    Сырая нефть в исходных условиях представляет собой условно-молекулярный раствор, либо коллоидно-дисперсную систему. Высокозастывающие нефти и пара-финистые газовые конденсаты, как правило, при 20°С представляют собой коллоидно-дисперсные системы. Состав дисперсной фазы в этих системах принципиально различен и здесь не рассматривается, однако структурные преврап ения в системах связаны с изменением температуры и имеют общие закономерности. На рис. 9.2 изображены возможные конфигурации дисперсной фазы в высокозастывающих нефтях и газовых конденсатах без депрессоров и в их присутствии. [c.245]

    Из элементарных курсов общей химии и физики известно, что вследствие сильно развитой межфазной поверхности гетерогенные дисперсные системы обладают большим избытком свободной поверхностной энергии и, следовательно, являются в принципе неустойчивыми. Позднее мы еще обсудим этот вопрос и покажем, что данное утверждение, которое во многих случаях не вызывает возражений, не настолько правильно, чтобы его абсолютизировать. Возникает вопрос, в какой мере законно применение термодинамических зависимостей к фазовым равновесиям в подобных системах. Гетерогенная дисперсная система может приобретать за счет замедляющих кинетику факторов известную устойчивость, позволяющую ей существовать в дисперсном состоянии достаточно долгое время. В течение этого времени вследствие молекулярного переноса (например, благодаря диффузии) устанавливается такое распределение ее компонентов в объеме и около межфазной поверхности, которое практически соответствует равновесию. Очевидно, что возникающее при этом состояние можно анализировать на основе соответствующих термодинамических представлений. В дальнейшем при рассмотрении вопроса об устойчивости лиофобных коллоидов мы увидим, что такая устойчивость действительно существует и именно этим объясняется широкое распространение подобных систем в природе и технике. Если какая-либо жидкость диспергирована в газе или п другой жидкости, то состояние относительного равновесия, о котором мы говорили выше, придает частицам термодинамически устойчивую форму — форму с наименьшей поверхностью, которая в простейшем случае является сферической. Не будем приводить других аргументов в пользу приложимости термодинамики равновесных систем к дисперсным гетерогенным системам и перейдем к рассмотрению самой термодинамики гетерогенных систем. [c.75]

    Термодинамика микрогетерогенных систем. Изложенные выше представления недостаточны для того, чтобы объяснить все термодинамические свойства дисперсных систем. Это особенно заметно в переходной области дисперсности, где осуществляется непрерывный переход от гетерогенных систем к системам молекулярной степени дисперсности. В соответствии с тем, что было сказано выше, при повышении дисперсности, т. е. при увеличении числа частиц и уменьшении их размеров, возрастает полная межфазная поверхность, а вместе с ней и полная поверхностная энергия. Иными словами, чем более высокодисперсна система, тем дальше она от состояния равновесия и, следовательно, тем более термодинамически неустойчива. Но в то же время известно, что состояния с максимальной (молекулярной) степенью дисперсности термодинамически устойчивы. [c.89]

    Изучение броуновского движения и диффузии в коллоидных системах помогло глубже вскрыть природу дисперсных систем, а также установить общность молекулярно-кинетических свойств этих систем и систем молекулярной дисперсности. Оно подтвердило ре- [c.302]

    I Молекулярно-дисперсные системы [c.18]

    На тип системы весьма существенное влияние оказывает концентрация дисперсной фазы. Б свободнодисперсных системах концентрация дисперсной фазы не может быть очень большой, так как в противном случае неизбежно возникал бы контакт между отдельными частицами. В результате образовывались бы пространственные сетки или, по крайней мере, объем системы заполнялся настолько частицами дисперсной фазы, что свободное перемещение частиц по отношению друг к другу было бы невозможно. Понятно, что при введении в систему стабилизатора, препятствующего сближению частиц, а следовательно, и проявлению молекулярных сил между частицами, можно значительно увеличивать критическую концентрацию, при которой возникают связи между [c.313]

    Размеры макромолекул соизмеримы с размерами коллоидных частиц. Поэтому растворы полимеров обнаруживают ряд свойств, характерных для коллоидных золей (эффект Тиндаля, замедленная диффузия, тиксотропия и др.). Однако в отличие от коллоидных золей растворы полимеров являются молекулярно-дисперсными системами и удовлетворяют основным критериям истинных растворов 1) самопроизвольность образования, термодинамическая устойчивость, равновесность и обратимость 2) постоянство концентрации во времени 3) однофазность, гомогенность. [c.80]

    Явление диффузии наблюдается во всех дисперсных системах, начиная от молекулярно-дисперсных до систем с видимыми в обычный микроскоп частицами, причем различие между этими системами, как ранее было отмечено, носит только количественный, а не качественный характер и выражается в различной скорости процесса, зависящей от величины и формы частиц. Поэтому то обстоятельство, что одни растворен- [c.308]

    К таким системам обычно относят растворы различных мыл, растительных дубильных веществ (таннины), алкалоидов и др. Эти вещества преимущественно содержат в своем составе неполярные радикалы, например углеводородные цепи, благодаря чему ядра образующихся мицелл имеют углеводородный состав. В подобной системе вещество дисперсной фазы находится в динамическом равновесии молекулярный раствор — коллоидная система. На это равновесие сильно влияют температура и концентрация. [c.263]

    Молекулярно-дисперсные системы имеют размеры частиц, не превышающие 1 ммк. Истинные растворы разнообразных неэлектролитов мочевины, глюкозы, сахарозы, спирта и др. относятся к мо-лекулярно-дисперсным системам. [c.110]

    По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно изменяться и свойства дисперсных систем кинетические, оптические, каталитические и др. При этом коллоидные системы занимают как бы промежуточное положение между грубыми и молекулярно-дисперсными системами (табл. 29). [c.111]

    В первом случае — это группы дисперсных систем грубые взвеси (суспензии), коллоидные и молекулярные растворы. Во втором случае — это агрегатное состояние фаз, образующих дисперсные системы. Каждая дисперсная фаза и дисперсионная среда могут быть в трех агрегатных состояниях в газообразном, жидком и твердом. [c.112]

    Учитывая, что коллоидные растворы занимают по размерам своих частиц промежуточное положение между грубодисперсными и молекулярно-дисперсными системами, для получения коллоидных растворов могут быть использованы две группы методов раздробление — диспергирование более крупных частиц до желаемой степени дисперсности, отвечающей величине коллоидных частиц, и укрупнение — объединение в агрегаты молекул или ионов до частиц, приближающихся по размерам к частицам коллоидных систем. [c.114]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    При диспергировании газообразных, жидких и твердых тел формируются дисперсные снстем >1, обладающие значительной межфазной поверхностью. Приициг[иальпо макротела могут быть диспергированы на грубодисперсные, коллоидно-дисперсные и молекулярно-дисперсные системы. Образование НДС при диспергировании макрофазы требует затраты механической работы. [c.64]

    Используя кривую распределения дисперсных частиц по размерам, рассчитывают усредненный размер и его зависимость от внешних воздействий (экстреграмма). В дальнейшем задача заключается в подборе таких условий, при которых размер частиц реагента подаваемого через нагнетательные скважины, соответствует размеру пор в породах-коллекторах. Реализация такой задачи необходима также при подаче в пласт реагентов п в молекулярном состоянии (газообразном, жидком), поскольку они формируют системы различной дисперсности при контакте с флюидами. [c.193]

    С углублением переработки нефти содержание асфальто-смолистых веществ в топливах будет увеличиваться, поэтому все более острой становится проблема производства стабильных котельных топлив. Асфальтены в мазутах находятся в коллоидном состоянии. Устойчивость асфальтено-содержаших дисперсных систем зависит от природы циклического углеводорода и его 1Сонцентрации в дисперсной среде. Наличж ароматических и нафтеновых углеюдородов повышает седиментацион-ную устойчивость дисперсной системы, причем для ароматических углеюдородов этот эффект значительно больше, чем для нафтеновых ароматические углеводороды более склонны к взаимодействию с молекулами асфальтенов, растворимость последних тем больше, чем выше концентрация ароматического компонента. В такой среде асфальтены диспергируются с образованием тонкодисперсных коллоидньк и молекулярно-дисперсных частиц. В среде парафиновых углеюдородов образуется преимущественно грубодисперсная система. Так как нафтеновые угле-юдороды по строению являются промежуточными между парафиновыми и ароматическими, то и кинетическая и агрегативная устойчивость [c.111]

    Буровые растворы — не истинные растворьг, в которых растворенное вещество находится в молекулярно-дисперсном состоянии, т. е. в виде молекул, атомов или ионов [81]. В отличие от истинных (однофазных, гомогенных) буровые растворы являются пoJШДи пep -ными (гетерогенными) системами, представленными главным образом дисперсионной средой и дисперсной фазой. Изменяя состав и относительное содержание этих фаз, обрабатывая их ПАВ или другими веществами, можно в довольно широких пределах регулировать их [c.43]

    Растворам полимеров присущи свойства, характерные и для истпиных и для коллоидных растворов Как и истинные растворы низкомолекулярных веществ, растворы полимеров представляют собой молекулярно-дисперсные системы, образующиеся самопроизвольно и сохраняющие стабильность и постоянство концентрации нри различных температурах и длительном хранении и имеющие обратимые свойства. В то же время для полимерных растворов, как и для всяких коллоидных систем, характерны малая скорость шаим ной диффузии в системе растворитель—растворенное вещество. [c.61]

    Жидкие нефтяные системы могут находиться в молекулярном и коллоидно-дис-персгюм состоянии. Парообразные и твердые нефтяные системы практически всегда представляют собой дисперсные системы. Нефтяные дисперсные системы характеризуются пространственным строением, наличием элементов дисперсной фазы, находящихся во взаимодействии, за счет чего они проявляют некоторые коллективные свойства, определяющие во многом поведение систем в условиях их добычи, транспорта, переработки и хранения. [c.36]

    Следует заметить, что один и тот же истинный раствор может в различных условиях переходить из наполненного состояния в ненаполненное, и наоборот. Все зависит от образования в системе способных к существованию во времени частиц дисперсной фазы. В случае нефтяных систем в истинном состоянии могут находиться легкокипя-щие фракции, причем до некоторого предела конечной температуры их выкипания Утяжеление фракции и, таким образом, появление в ней высококипящих углеводородов и соединений нефти более сложного состава не позволяют перевести систему в истинно молекулярный раствор. Поэтому для подобных нефтяных систем целесообразно применять понятие условно-молекулярного раствора. Хорошим примером условно-мо-лекулярного раствора может явиться раствор асфальтенов в дизельной фракции. Строение асфальтеновых соединений, очевидно, даже при повышении температуры не позволит полностью перевести их в растворе на уровень молекул. Асфальтеновые частицы будут находиться в системе в молекулярно-дисперсном состоянии. [c.68]

    Авторами отмечается чрезвычайная чувствительность метода к температурным условиям испытаний, что объясняется возможным переходом системы из дисперсного в молекулярное состояние. Возможно предположить, что в данном случае существенное влияние на результаты опытов оказывают также пристеночные эффекты, которые, несмотря на предпочтительное применение викозиметров с капиллярами повышенного диаметра (1,7-2,0 мм), могут вносить непрогнозируемое влияние на характер течения системы и соответственно искажать результаты экспериментов. [c.73]

    Переход от грубодиеперсных к молекулярно-дисперсным системам непрерывен, однако занимающие промежуточное положение коллоидные и микрогетерогенные системы качественно вполне специфичны. Благодаря большой удельной поверхности этих систем для них имеют огромное значение адсорбция и вообще поверхностные явления, в то время как поведение грубодисперсных и молекулярных систем определяется в основном объемными свойствами. [c.18]

    Несмотря на бесспорную связь между размером частиц и свойствами дисперсной системы, неверно все особенности дисперсной системы объяснять только дисперсностью, как это делал, например, немецкий ученый Во. Оствальд. Исходя из допущения о примате размера частиц над всеми остальными свойствами. Во. Оствальд даже предложил называть науку о коллоидных системах не коллоидной химией, а дисперсоидологией, т. е. учением о дисперсном состояние материи. Советскими учеными, и в первую очередь Н. П. Песковым, было указано, что такой взгляд является односторонним и представляет собою чисто механистический подход. Дисперсоидологйя, сводившая все только к уменьшению или увеличению размера частиц, совершенно не учитывала сложного, в большинстве случаев сопровождающегося адсорбцией, Взаимодействия частиц дисперсной фазы с дисперсионной средой, а также возможность чисто химических взаимодействий при коагуляции. А между тем эти явления играют весьма важную роль в коллоидных системах. Кроме того, дисперсоидология, рассматривая все дисперсные системы как качественно тождественные и отличающиеся только размером частиц, не может объяснить особые свойства, которыми обладают коллоидные системы и которые отличают их как от молекулярно-дисперсных, так и грубодисперсных систем. [c.23]

    Качественный дисперсионный анализ устанавливает, является ли исследуемая система грубодисперсной, коллоиднодисперсной или молекулярнодисперсной. К грубодисперсным системам относят системы с размером частиц больше 0,1 мк. Размеры частиц от 0,1 мк до 1 ммк лежат в области коллоидной дисперсности частицы меньше 1 ммк относят к молекулярной дисперсности. [c.6]

    Фазовые равновесия. В растворе полимера, как и во всякой однофазной молекулярно-дисперсной системе, всегда имеют место гомофазные флуктуации концентрации. В определенных условиях могут возникнуть гетерофазные флуктуации, которые являются зародыщами новой фазы и при небольшом изменении условий превращаются в новую пространственно протяженную фазу. В результате однофазный раствор разделяется на две фазы, одна из которых представляет собой более разбавленный, а другая — более концентрированный раствор по сравнению с исходным. Такие фазовые превращения характеризуются соответствующими изменениями термодинамических функций. [c.88]


Смотреть страницы где упоминается термин Система молекулярно-дисперсные: [c.377]    [c.5]    [c.176]    [c.46]    [c.145]   
Физическая и коллоидная химия (1988) -- [ c.154 ]

Общая химия ( издание 3 ) (1979) -- [ c.314 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсионный анализ. Оптические и молекулярно-кинетические свойства дисперсных систем

Дисперсные системы

Дисперсные системы свойства молекулярно-кинетические

Исследование молекулярно-кинетических свойств дисперсных систем

Классификация дисперсных систем по агрегатному состоянию Классификация дисперсных систем по интенсивности молекулярных взаимодействий на границе раздела фаз

Молекулярно-кинетические и оптические свойства дисперсных систем

Молекулярно-кинетические свойства дисперсных систем и растворов высокомолекулярных соединений

Молекулярные взаимодействия в дисперсных системах



© 2025 chem21.info Реклама на сайте