Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос водорода дыхательной цепью

    У всех известных переносчиков водорода дыхательной цепи спектральные свойства претерпевают характерные изменения при окислении и восстановлении. Это позволяет следить за переносом водорода в дыхательной цепи с помощью спектроскопических методов. Спектроскопическое определение специфических соединений в биологических системах осложнено относительно большими неспецифичными изменениями в фоновом поглощении. Это затруднение преодолевают, применяя спектрофотометры двух типов. [c.221]


    Итак, в результате одного цикла Кребса образовалось четыре пары атомов водорода три пары атомов водорода восстановили НАД+, а четвертая—ФАД сукцинатдегидрогеназы, но в конечном итоге все атомы водорода превращаются в ионы Н+, а соответствующее им число электронов переносится по дыхательной цепи к кислороду, отдавая по пути свою энергию на фосфорилирование АДФ (см. стр. 404). [c.423]

    Велика, например, проблема цитохромной, дыхательной цепи, по которой происходит перенос электронов от атомов водорода окисляемого субстрата до кислорода, принимающего эти электроны. [c.336]

    Несмотря на большое различие в потенциалах между системами на концах дыхательной цепи, эти системы не способны взаимодействовать непосредственно. Схема учитывает гипотезу о том, что начальные изменения заключаются в переносе водорода, а заключительные — в переносе электрона. [c.722]

    Перенос водорода на молекулярный кислород осуществляется с помощью системы структурно и функционально взаимосвязанных переносчиков, составляющих в совокупности дыхательную цепь . [c.356]

    Исключительно важную роль ЦТК играет в энергетическом обмене организма. В этом процессе образуются первичные доноры водорода для дыхательной цепи митохондрий, которые окисляются НАД - или ФАД-зависимыми дегидрогеназами, передающими водород в цепь переноса электронов, где энергия электронов окисляемых субстратов способна трансформироваться в химическую энергию макроэргических связей АТФ. [c.265]

    Кроме перечисленных выше компонентов, с переносом водорода связаны также кофермент Q, а-токоферол и витамин К. Однако имеющиеся данные недостаточны, чтобы считать эти соединения компонентами дыхательной цепи. [c.217]

    Никотинамидное кольцо НАД-Нг и изоаллоксазиновое кольцо ФАД расположены в параллельных плоскостях, так что атом азота никотинамида лежит против 2-го атома углерода рибофлавина. Неорганический фосфат соединен с двумя коферментами водородной связью, идущей к МНг-группе никотинамидного кольца. Атом водорода переносится от 4-го атома углерода никотинамидного кольца к атому азота ФАД, занимающему 10-е положение. Одновременный перенос электрона от атома азота никотинамида к С = 0-группе ФАД придает атому азота никотинамида положительный заряд, а С = О-группе ФАД — повышенную электронную плотность. Благодаря положительному заряду атом азота никотинамида притягивается к отрицательно заряженному кислородному атому фосфатного иона с образованием электростатической связи I. Электрон, перенесенный к С = 0-группе, стремится образовать связь 11. В результате возникновения этих двух связей образуется ФАД-Нг Ф. Фосфорилированный ФАД-На представляет собой макроэргическое соединение, которое может фосфорилировать АДФ либо непосредственно, либо в ходе последующего окисления. Согласно изложенной теории, разобщение фосфорилирования и дыхания, а также индуцирование АТФ-азы динитрофенолом обусловлены конкуренцией между ДНФ и 0 неорганического фосфата за четвертичный азот никотинамидного кольца. Эта конкуренция препятствует образованию ФАД-Нг- Ф. Теория Грабе дает удовлетворительное объяснение для структурных потребностей фосфорилирования в дыхательной цепи. Однако, взятая в совокупности со всем механизмом 2-го типа, эта теория не согласуется с данными о том, что способные к восстановлению компоненты дыхательной цепи, по-видимому, не являются промежуточными продуктами в реакциях фосфорилирования. [c.253]


    Процессы переноса водорода от воды к акцептору водорода (пиридиннуклеотиду или феррицианиду) и фосфорилирования сопряжены так же, как в дыхательной цепи. Следовательно, восстанов- [c.263]

    В настоящее время имеется мало достоверных сведений о механизме реакций, посредством которых перемещение водорода сопряжено с синтезом АТФ. Связь между переносом водорода и фосфорилированием была показана для нециклического фотосинтетического фосфорилирования. По аналогии с фосфорилированием в дыхательной цепи полагают, что в процессе фотосинтетического фосфорилирования образуется некоторый макроэргический промежуточный продукт, подобный А I в дыхательной цепи. Для того чтобы перенос водорода был непрерывным, нужно регенерировать А и I либо добавлением АДФ и Фн для образования АТФ, либо с помощью разрыва сопряжения. Механизм нециклического фотосинтетического фосфорилирования можно представить следующим образом  [c.269]

    Особенностью оксидоредуктаз является их способность образовывать в клетке цепи ферментов, в которых осуществляется перенос водорода (электрона) от первичного субстрата к конечному акцептору. Длина этой дыхательной цепи и количество входящих в нее оксидоредуктаз зависит от вида микроорганизмов (рис. 14). [c.56]

    Дыхание. Большинство гетеротрофных организмов получает энергию в результате биологического окисления органических веществ — дыхания. Водород от окисляемого вещества (см. 24) передается в дыхательную цепь. Если роль конечного акцептора водорода выполняет только кислород, процесс носит название аэробного дыхания, а микроорганизмы являются строгими (облигатными) аэробами, которые обладают полной цепью ферментов переноса (см. рис. 14) и способны жить только при достаточном количестве кислорода. К аэробным микроорганизмам относятся многие виды бактерий, гри-бь1, водоросли, большинство простейших. Аэробные сапрофиты играют основную роль в процессах биохимической очистки сточных вод и самоочищении водоема. [c.63]

Рис. 1. Механизм переноса ионов Н , постулируемый хемиосмотической гипотезой. Предполагается, что последовательные переносчики дыхательной цепи (А—Р) образуют три Н -переносящие петли . Каждая такая петля переносит из митохондриального матрикса наружу два иона Н через переносчик (красные стрелки), транспортирующий восстановительные эквиваленты в виде атомов водорода. Рис. 1. <a href="/info/859604">Механизм переноса ионов</a> Н , постулируемый <a href="/info/284640">хемиосмотической гипотезой</a>. Предполагается, что последовательные <a href="/info/1402773">переносчики дыхательной цепи</a> (А—Р) образуют три Н -переносящие петли . Каждая такая петля переносит из <a href="/info/1350648">митохондриального матрикса</a> наружу два иона Н <a href="/info/1379628">через переносчик</a> (красные стрелки), транспортирующий <a href="/info/477816">восстановительные эквиваленты</a> в виде атомов водорода.
    Два электрона, оставшиеся после выведения в среду двух ионов Н , возвращаются обратно, т. е. переходят на другую сторону мембраны, с помощью переносчика (серые стрелки), транспортирующего восстановительные эквиваленты в виде электронов. На каждую пару электронов, поступающих от субстрата ЕНг на кислород, эти три петли переносят из митохондриального матрикса в среду шесть ионов водорода (3-2 = 6Н ). Предполагается, что все компоненты дыхательной цепи фиксированы на мембране. Этим обеспечивается их необходимое расположение друг относительно друга. [c.533]

    Цикл трикарбоновых кислот (рис. 7.7) служит для окисления двухуглеродного соединения ацетата до Oj с отщеплением водорода. При участии трех дегидрогеназ водород переносится на NAD(P), а под действием сукцинатдегидрогеназы-непосредственно на хинон. Как правило, коферменты передают водород в дыхательную цепь. [c.232]

    Некоторые из этих компонентов переносят электроны, другие переносят водород. Взаиморасположение переносчиков в мембране таково, что при транспорте электронов от субстрата к кислороду протоны (Н ) связываются на внутренней стороне мембраны, а освобождаются на внешней. Можно представить себе, что электроны в мембране проходят зигзагообразный путь и при этом переносят протоны изнутри наружу. Эта система, транспортирующая электроны и протоны, получила название дыхательной или электрон-транспортной цепи. Иногда ее образно называют протонным насосом , так как главная функция этой системы— перекачивание протонов. [c.235]

    Компоненты дыхательной цепи погружены в двойной липидный слой. Речь идет о большом числе ферментов, коферментов и простетических групп, различных дегидрогеназ и транспортных систем, участвующих в переносе электронов и водорода. Белковые компоненты могут быть выделены из мембраны. Важнейшие из компонентов, участвующих в окислении водорода,-это флавопротеины, железосерные белки, хиноны и цитохромы. [c.236]

    Энергия переноса водорода с дегидрируемых субстратов общего пути катаболизма на атмосферный кислород используется для синтеза АТФ. При переносе водорода с каждой молекулы НАДН в дыхательной цепи образуется 3 молекулы АТФ. В четырех реакциях дегидрирования в общем пути катаболизма образуется 4 НАДН следовательно, синтезируется 4x3= 12 молекул АТФ. В одной реакции (катализируемой сукцинатдегидрогеназой) водород переносится на убихинон при дальнейшем переносе в дыхательной цепи в этом случае синтезируется 2 молекулы АТФ. И, наконец, в цитратном цикле происходит одна реакция субстратного фосфорилирования, дающая еще одну молекулу АТФ. Таким образом всего при распаде 1 моль пирувата образуется 15 моль АТФ. Отметим, что 3 из них образуются при окислительном декарбоксилировании пирувата и 12 — в цитратном цикле. Эти величины отражают теоретически возможный максимум синтеза АТФ фактически АТФ синтезируется меньше, поскольку часть электрохимического потенциала расходуется на перенос разных веществ через мембрану при участии транслоказ. [c.241]


    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Химический механизм сопряжения переноса электронов с образованием АТФ неизвестен. Наибольшее признание в последние годы получила гипотеза П. Митчелла об электрохимическом (хемиосмотиче-ском) сопряжении окислительных реакций в дыхательной цепи с синтезом АТФ, катализируемым АТФ-синтетазным комплексом. Согласно этой гипотезе вне- и внутримитохондриальные пространства (левая и правая часть рисунка соответственно) разделены мембраной М, непроницаемой для ионов водорода — Н+. Дыхательная цепь организована в мембране таким образом, что окисление субстрата (SH2) кислородом приводит к разделению зарядов (группа реакций — I). Энергия окисления запасается в виде электрохимического потенциала Н+ [c.471]

    Флавиновые К.-коферментная форма витамина рибофлавина. Среди оксидоредуктаз дыхательной цепи, участвующих в переносе электронов и водорода, большое значение имеют флавопротеи-ды-ферменты, содержащие в качестве простетич. групп флавинмононуклеотид (ФМН Па) и флавинадениндину-клеотид (ФАД 116). В нек-рых ферментах (напр., в сукци-натдегидрогеиазе) ковалентная связь ФАД с апоферментом образована пирофосфатной группой К. и атомом N имада-зольного кольца гистидина. Восстановление флавиновых К. осуществляется через ряд промежут. стадий, включающих образование радикалов. [c.488]

    У аэробных организмов восстановленные формы переносчиков водорода вновь окисляются молекулярным кислородом в цепи переноса электронов, получившей название дыхательной цепи (на рис. 7-1 показано в центральной части рисунка под окружностью). Окисление NADH (восстановленного NAD+) кислородом характеризуется значительным уменьшением свободной энергии (при pH 7 величина ДС составляет —219 кДж-моль ) и сопровождается образованием трех молекул АТР (из ADP и неорганического фосфата). Этот процесс, называемый окислительным фосфорилированием (гл. 10), представляет собой главный путь накопления биологически полезной энергии (в форме АТР), высвобождающейся при расщеплении жиров в организме человека. [c.84]

    Вскоре Кейлин установил, что три полосы поглощения, наблюдаемые при 604, 564 и 550 нм (а, Ь я с), обусловлены тремя различными пигментами, тогда как полоса при 521 нм оказалась общей для всех трех. Кейлин предложил называть эти пигменты цитохромами а, Ь и с. Представление о переносе электронов по дыхательной цепи [2] возникло почти сразу же после того, как была установлена роль флавин- и пиридиннуклеотидсодержащих коферментов на уровне дегидрирования субстратов. Атомы водорода, поступающие на эти переносчики, могли быть использованы для восстановления окисленных цитохромов. Последние могли бы окисляться кислородом при участии цитохромок-сидазы. [c.363]

    В условиях аэробиоза распад углеводов до образования пировиноградной кислоты происходит так же, как и при анаэробиозе, но в отличие от него пировиноградная кислота полностью окисляется до диоксида углерода и воды в цикле трикарбован-ных кислот. В этом цикле последовательно протекают окислительно-восстановительные реакции, в которых под действием специфических дегидроназ происходит перенос водорода на молекулярный кислород. Однако перенос осуществляется не непосредственно, а через молекулы-переносчики, образующие дыхательную цепь. [c.1051]

    В состав обоих коферментов (НАД и НАДФ) входит никотин-амид, обеспечивающий перенос пары электронов или протонов от субстрата, например окисление этилового спирта в присутствии алкогольдегидрогеназы (рис. 9). К этой же группе относятся коферменты, содержащие флавины — флавинмононуклео-тид (ФМН) и флавинадениндинуклеотид (ФАД), которые участвуют в переносе электронов и водорода по дыхательной цепи. [c.30]

    К настоящему времени выяснена основная коферментная роль KoQj . Он оказался обязательным компонентом дыхательной цепи (см. главу 9) осуществляет в митохондриях перенос электронов от мембранных дегидрогеназ (в частности, НАДН-дегидрогеназы дыхательной цепи, СДГ и т.д.) на цитохромы. Таким образом, если никотинамидные коферменты участвуют в транспорте электронов и водорода между водорастворимыми ферментами, то KoQj благодаря своей растворимости в жирах осуществляет такой перенос в гидрофобной митохондриальной мембране. Пластохиноны выполняют аналогичную функцию переносчиков при транспорте электронов в процессе фотосинтеза. [c.243]

    Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление ( сгорание ) одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД и ФАД), перешедщие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи (в цепи дыхательных ферментов), локализованной в мембране митохондрий. Образовавщийся ФАДН, прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, 9 молекул АТФ (см. главу 9). Одна пара атомов от сукцинатдегидрогеназы-ФАДН, попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ. В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование), что равносильно одной молекуле АТФ. Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ. [c.349]

    Завершающим этапом биологического окисления является тканевое дыхание, в результате которого происходит перенос водорода (протонов электронов) от субстрата (НАД-Н или сукцината) на молекулярный кис-лород. Этот процесс осуществляется при каталитическом участии системы коферментов, входящих в электроно-транспортную дыхательную цепь ми- I тохондрий животных тканей, последовательно осуществляющих реакции окислительно-восстановительных превращений. [c.559]

    Важную роль в аэробном метаболизме пропионовых бактерий играет флавиновое дыхание , которому приписывают основную связь этих бактерий с молекулярным кислородом. В процессе фла-винового дыхания происходит перенос двух электронов с фла-вопротеинов на О2, сопровождающийся образованием перекиси водорода, которая разлагается бактериальной каталазой и перок-сидазой. Однако флавиновое дыхание не связано с получением клеткой энергии. Транспорт электронов в дыхательной цепи некоторых пропионовых бактерий сопровождается образованием АТФ, что может указывать на подключение к этому процессу ци-тохромов, однако эффективность окислительного фосфорилирования низка. Последнее, вероятно, объясняется несовершенством механизмов сопряжения. В то время как в аэробных условиях конечным акцептором электронов с НАД Н2 является О2, в анаэробных условиях им может быть нитрат, фумарат. [c.231]

    В митохондриях на 3 участках окислительной цепи происходит выделение протонов во внещнюю среду. Соответственно 3 реакции ведут к образованию ДЦн+ (рис. 96). Первая локализована в начале дыхательной цепи и связана с функционированием НАД(Ф) Н2-дегидрогеназы. Второй генератор ДДн+ определяется способностью убихинона переносить водород. Последний локализован в конце дыхательной цепи и связан с активностью цитохромоксидазы. [c.365]

    Мп " более устойчив к окислению О , чем Ре " . Его химическое окисление (Мп + —> Мп ) молекулярным кислородом с заметной скоростью происходит только при pH > 8,5. Поэтому в нейтральной среде окисление марганца имеет только ферментативную природу. Окисление Ре + и Мп " с последующим отложением нерастворимых окислов вокруг бактериальных клеток может быть результатом взаимодействия ионов металлов с продуктами бактериального метаболизма, в частности с Н2О2, образующейся в процессе окисления органических веществ при переносе электронов по дыхательной цепи. Перекись водорода, возникающая в [c.376]

    Разложение целлюлозы в аэробных условиях приводит к последующему метаболизированию глюкозы в системе катаболиче-ких процессов (гликолиз — ЦТК) с поступлением водорода (электронов) в дыхательную цепь и переносу их на О2. [c.404]

    АТФ-синтаза т1г Ire 1Ш1 и SvPiWMiiW дыхательной цепи, является составной частью мембраны. Каким образом происходящий в дыхательной цепи перенос водорода и электронов сопряжен с синтезом АТФ, до конца еще не выяснено. Однако многочисленные эксперименты показали, что регенерация АТФ происходит в пространствах, окруженных со всех сторон мембранами, - в пузырьках, или ве- [c.55]

    Присоединяя водород, НАД превращается в НАД-Нг. Восстановленная дегидрогеназа передает свой водород другому акцептору и при этом окисляется в НАД. Вторичные, или фла-виновые, дегидрогеназы переносят водород от первичных на следующий промежуточный переносчик в дыхательной цепи. Таким образом, в клетке водород непрерывно переносится с одного акцептора на другой и в конце концов передается конечному, или терминальному, акцептору, находящемуся вне клетки, например [c.94]

    Дыхательная цепь с ее ферментами, участвующими в переносе водорода и в фосфорилировании, локализована в митохондриях. Эти ферменты, по-вндимому, прочно связаны с митохондриаль- [c.222]

    В состав дыхательной цепи. Остается, однако, совершенно неясным, какпм образом целостный комплекс ферментов и переносчиков дыхательной цепи осуществляет перенос водорода, сопряженный с фосфорилированием. [c.228]

    Большая часть общей свободной энергии окисления освобождается по мере того, как водород переносится к кислороду через реакции дыхательной цепи. Например, при полном окислении глюкозы до углекислого газа и воды изменение свободной энергии составляет —688 ккал. Окисление 1 молекулы глюкозы по пути ЭМП и в цикле Кребса сопровождается образованием 10 молекул восстановленного НАД и 2 молекул восстановленного флавопротеида. Последующее окисление этих восстановленных переносчиков в дыхательной цепи приводит к общему изменению свободной энергии, равному —620,1 ккал [окисление НАД-Нг, Ю- (—53,75) ккал Ч-4- окисление восстановленного флавопротеида, 2-(—41,3) ккал]. Таким образом, при окислении глюкозы 90% [ (620,1/688)-100% ] общего изменения свободной энергии происходит в реакциях дыхательной цепи. Если допустить, что отношение Р/О для окисления восстановленного НАД и восстановленного флавопротеида составляет соответственно 3 и 2, то высоко экзергоиические реакции дыхательной цепи должны быть сопряжены с синтезом АТФ с эффективностью приблизительно 44% [ (3-8-10 + 2-8-2)/(620,1) 100% ]. [c.243]

    Эти данные позволяют предположить, что перенос водорода и фосфорилирование — это две отдельные реакции. Во время переноса водорода один из способных к восстановлению компонентов дыхательной цепи (А) связывается с образованием макроэргнче-ского промежуточного соединения А I (I — ингибитор или промежуточный продукт). Для того чтобы продолжался перенос водорода, из соединения А I должны регенерироваться вещества А и I. Превращение А I в А и I может осуществиться или в результате фосфорилирования (реакции 5.10 и 5.11), или при добавлении разобщающего агента (реакция 5.13). [c.250]

    Допускают, что в летательной мышце насекомых существует цикл глицерин-1-фосфата, который осуществляет перенос водорода от внемитохондриального НАД-Нг к дыхательной цепи. Этот цикл включает сочетанное действие двух а-глицерофосфатдегидрогеназ — растворимой НАД-специфичной и связанной с субклеточными частицами и цитохромами. [c.296]

    При изучении дыхательных ферментов отмечалось, что обычно окисление органических веществ происходит отщеплением от них водорода и что перенос водорода на кислород воздуха идет не сразу, а ступенчато, через промежуточные переносчики водорода никотинамид-аденин-динуклеотиды, флавиновые ферменты и цитохромную систему. Белицер предположил, что окислительное фосфорилирование происходит не в самом цикле ди- и трикарбоновых кислот, а при переносе электронов от окисляющегося вещества на кислород через промежуточные переносчики электронов, входящих в дыхательную цепь. Белицер показал, что изменение свободной энергии для переноса пары электронов от восстановленного никотинамида на кислород составляет приблизительно 55 ккал АР = —55 ккал). В связи с тем, что для образования 1 моля АТФ из АДФ требуется затрата 12 ккал, то, очевидно, при наличии соответствующего ферментативного механизма перенос каждой пары электронов от НАД или НАДФ на кислород теоретически может сопровождаться образованием около четырех молей АТФ (12X4 = 48 ккал). [c.172]

    Оба кофермента свободно диссоциируют, т. е. отделяются от одного белка-дегидрогеназы и переносят водород после связывания с другой дегидрогеназой на другой акцептор. Поэтому их называют также переносчиками водорода. NADH2 переносит водород в основном на предшественники конечных продуктов брожения или же передает его в дыхательную цепь, в то время как NAD PH 2 участвует главным образом в восстановительных этапах процессов биосинтеза. [c.221]

    АТР. Они обладают особым аппаратом дыхательной электрон-транспортной) цепью и ферментом АТР-синтазой, обе системы у прокариот находятря в плазматической мембране, а у эукариот-во внутренней мембране митохондрий. Ведущие свое происхождение от субстратов восстановительные эквиваленты (Н или электроны) в этих мембранах поступают в дыхательную цепь, и электроны переносятся на О 2 (или другие терминальные акцепторы электронов). В дыхательной цепи происходят реакции, представляющие собой биохимический аналог сгорания водорода. От химического горения молекулярного водорода они отли-чг ются тем, что значительная часть свободной энергии переводится при этом в биологически доступную форму, т.е. в АТР, и лишь небольшая доля рассецвается в виде тепла. [c.235]

    Еще одну группу окислительно-восстановительных систем в дыхательной цепи составляют хиноны. Во внутренней мембране митохондрий и у грам-отрицательных бактерий имеется убихинон (кофермент Q рис. 7.9, В), у грам-положительных бактерий-нафтохиноны, а в хлоропластах-пластохиноны, Хиноны, в частности убихинон, липофильны и поэтому локализуются в липидной фазе мембраны. Они способны переносить водород или электроны. Перенос может осуществляться в два этапа, при этом в качестве промежуточной формы выступает се-михинон. По сравнению с другими компонентами дыхательной цепи хиноны содержатся в 10-15-кратном избытке. Они служат сборщиками водорода, поставляемого различными коферментами и простетические ми группами в дыхательной цепи, и передают его цитохромам. [c.238]

    Цитохромы-окислительно-восстановительные системы, переносящие только электроны водород они не транспортируют. К цитохромам электроны поступают от пула хинонов. При переносе электронов эквивалентное им число протонов переходит в раствор. В качестве простети-ческой группы цитохромы содержат гем (рис. 7.9, Г). Центральный атом железа геминового кольца участвует в переносе электронов, изменяя свою валентность. Цитохромы окрашены они отличаются друг от друга спектрами поглощения и окислительно-восстановительными потенциалами. Различают цитохромы а, а , Ь, с, о и ряд других. В цитохроме с группы гема ковалентно связаны с цистеиновыми остатками апопро-теина благодаря такой прочной связи он растворим в воде и его можно экстрагировать из мембраны солевыми растворами. Цитохром с найден почти у всех организмов, обладающих дыхательной цепью. Что касается распространенности других цитохромов, то тут существуют заметные различия. [c.238]

    Окислительно-восстановительный потенциал. Транспорт водорода и транспорт электронов-процессы эквивалентные. Дыхательная цепь может рассмЕ триваться как цепь переноса электронов. Компоненты дыхательной цепи переходят попеременно из окисленного состояния в восстановленное и обратно, т. е. ведут себя как типичные окислительно-восстановительные катализаторы. Они обладают окислительно-восстано-вительнбш потенциалом, который может быть измерен непосредственно (у цитохромов) или косвенно (у NAD, FAD). [c.239]

    Поскольку разность между величинами E для и Од составляет — 0,42-0,81 = - 1,23 В, изменение свободной энергии в реакции гремучего газа AG должно быть равно — 2-96,5 1,23 = — 237,4 кДж/моль. В клетке при переносе водорода от NADHj разность потенциалов составляет только [(-Н 0,81 В) - (- 0,32 В)] = 1,13 В, т. е. AG = = — 218 кДж/моль. Аналогичным образом по разности потенциалов можно вычислить соответствующий выход энергии для любых двух переносчиков электронов в дыхательной цепи (табл. 7.4). [c.241]

    Расположение и функции окислительно-восстановительных систем в дыхательной цени. По окислительно-восстановительному потенциалу компоненты дыхательной цепи можно расположить в ряд, который начинается с NAD (наиболее отрицательный потенциал) и оканчивается цитохромоксидазой и кислородом (рис. 7.11). Хиноны и цитохромы служат вспомогательными субстратами. Эти компоненты восстанавливаются водородом, доставляемым различными донорами. Получаемый через NAD водород с помощью NADH-дегидрогеназы переносится на хинон аналогичным образом на хинон переносится водород от сукцината (через сукцинатдегидрогеназу) и водород, полученный при дегидрировании жирных кислот (через другие специфические дегидрогеназы). Хинон служит сборным резервуаром водорода из субстратов в дыхательной цепи. Некоторые из ферментов, участвующих в переносе водорода, содержат FMN или FAD, а также железосерные белки. [c.241]

    Коэффициент Р/О и энергетический баланс. Рассмотрение окислительно-восстановительных потенциалов (табл. 7.4) показывает, что в дыхательной цепи имеются только три этапа окисления, на которых освобождается по меньшей мере столько энергии, сколько содержится в одной высокоэнергетической связи. При переносе 2 [Н] от NADH на кислород только три электронных перехода могут быть сопряжены с фосфорилированием ADP в АТР, так что в лучшем случае лишь три молекулы фосфата могут быть включены в органическое соединение. Эту связь окисления с фосфорилированием обычно выражают в виде коэффициента Р/О (число молекул АТР, образующихся на 1 атом затраченного кислорода). Для митохондрий животных, используя в качестве доноров водорода изоцитрат или малат (переносящие свой водород на NAD), можно экспериментально получить коэффициент Р/О, равный 3 для сукцината, от которого водород может быть включен в цепь дыха- [c.242]


Смотреть страницы где упоминается термин Перенос водорода дыхательной цепью: [c.361]    [c.11]    [c.478]   
Биоэнергетика Введение в хемиосмотическую теорию (1985) -- [ c.25 , c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхательные яды

Цепи с переносом



© 2024 chem21.info Реклама на сайте