Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак механизм использования

    В четырех главах настоящего учебного пособия рассмотрены методы каталитического гидрирования органических соединений и их восстановления комплексными гидридами металлов, применение жидкого аммиака в органическом синтезе и реакции литийорганических соединений. Каждая глава содержит обзор литературы, в котором обсуждаются область применения метода, его важнейшие особенности, механизмы реакций, экспериментальные условия их реализации и зависимость реакционной способности реагентов от строения. Обзоры тематически связаны с соответствующими разделами лекционного курса и могут использоваться при их углубленном изучении, что существенно, так как по большинству из рассмотренных методов в отечественной учебной литературе подобных обзоров нет. Перечень основных литературных источников, использованных при написании книги, по-видимому, будет полезен в большей степени преподавателям, чем студентам, поскольку в него включены преимущественно труднодоступные издания и специальные монографии, малопригодные в качестве учебного материала. [c.7]


    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]

    Тепловые эффекты каждой из стадий определяются независимым путем, что позволяет в дальнейшем сопоставить каталитическую активность, в некотором ряду катализаторов, полученную экспериментально, с тепловыми эффектами отдельных стадий. Использование этого принципа ограничено каталитическими реакциями, характеризующимися одинаковыми механизмами и малыми изменениями энтропии активации. Условие (П.1) выполняется при предварительном подборе катализаторов для реакции окисления водорода, синтеза аммиака, разложения муравьиной кислоты и т. п. В частности, в реакции окисления водорода в соответствии с условием (II.1) из окисных катализаторов наиболее активна УгОз, из металлов — платина. [c.25]

    Наиболее убедительное доказательство преобладания на поверхности иминных радикалов, а не атомов азота, получено при сравнении результатов синтеза аммиака с использованием и Da- Отношение параметров (ап — при использовании водорода ж а — нри использовании дейтерия), определяемых из кинетического уравнения (155), равно 2,7 как нри 250, так и при 300°. Нин е приведено это отношение, записанное в виде сумм по состояниям для механизма реакции с участием адсорбированных атомов азота  [c.362]

    По механизму и диапазону применимости эта реакция аналогична реакции 10-54 и может быть проведена с участием аммиака, первичных или вторичных аминов [698]. Однако при использовании аммиака и первичных аминов получаются также и имиды, в которых с атомом азота связаны две ацильные группы. Это происходит особенно легко в случае циклических ангидридов, из которых образуются циклические имиды [699]  [c.154]


    Известно, что аммиак является ядом для растений, и при накоплении большого количества аммиака может наблюдаться отравление тканей растений. Поэтому растения вынуждены так или иначе обезвреживать аммиак и не допускать его накопления в тканях. Одна из основных реакций, приводящих к связыванию аммиака,— использование его для синтеза аминокислот. Однако часто количество аммиака, поступающего или образующегося в растениях, оказывается большим, чем может быть использовано при биосинтезе аминокислот, поэтому для его связывания в растениях выработались и другие механизмы. [c.241]

    Очевидно, что успешное использование любого процесса окисления или любого процесса разложения аммиака зависит от быстроты удаления гидразина из сферы реакции. Легкость, с которой сам гидразин подвергается окислению или разложению, затрудняет успешное применение такого рода методов. Как уже было указано, единственный процесс промышленного получения гидразина основан на окислении аммиака или его производных гипохлоритом. При рассмотрении экспериментальных исследований, опубликованных до настоящего времени в литературе, представляется сомнительным, осуществляются ли реакции окисления аммиака кислородом и синтез гидразина с помощью гипохлорита по сходным механизмам. [c.30]

    Сравнительно недавно [9] изучено взаимодействие атомов водорода, генерируемых микроволновым разрядом в молекулярном водороде, с аммиаком в поточной системе при 150 °С. Однако полученные результаты не проливают света на механизм реакции обмена, так как не был использован дейтерий, а за скоростью реакции следили только по уменьшению концентрации аммиака. [c.128]

    По первому способу для обессеривания сернистого кокса применяют различные реагенты пар, воздух, паровоздушную смесь, азот, водород, метан, хлор, аммиак, нефтяные газы (низкотемпературное обессеривание с применением газов). Этот способ, в соответствии с ранее расмотренным механизмом реакций прокаливания при низких тем пературах (см. стр. 200—202), основан либо на химическом связывании продуктов первичного распада сернистых соединений и быстром отводе их из зоны реакции, либо (на более поздних стадиях) на использовании химической активности и кинетической энергии газов для разрушения вторичных комплексов. Подача твердых реагентов (А1С1з, КаОН и др.), которые могут связывать НзЗ, также должна способствовать глубокому обессе-риванню. [c.212]

    Таблица показывает, что для всех цехов синтеза карбамида и аммиака характерен весьма низкий коэффициент интегральной нагрузки, который дает общую характеристику использования агрегатов по мощности. Однако структура этого коэффициента на заводе карбамида существенно отличается от его структуры для цеха синтеза аммиака. На заводе карбамида при сравнительно высоком коэффициенте интенсивной нарузки ухудшение показателя общей интегральной нагрузки определяется недопустимо низким показателем экстенсивного использования агрегатов. Для завода аммиака главным фактором снижения показателя интегральной нагрузки является невысокий уровень коэффициента интенсивной нагрузки агрегатов. Как показывают данные таблицы, на обоих. заводах коэ( ициент экстенсивной нагрузки по годам имеет тенденцию к понижению. Для понимания механизма формирования коэффициентов экстенсивного использования необходимо проанализировать структуру простоев технологического оборудования по причинам. [c.322]

    Детальный механизм многоступечатой реакции Фишера до сих пор полностью не установлен, хотя существуют убедительные доказательства в пользу последовательности, приведенной ниже. Так, например, изучение процесса с помощью введения меченых атомов доказывает отщепление р-атома азота в виде аммиака, а в некоторых случаях строение промежуточных соединений было определено с использованием спектроскопии С-ЯМР и Н-ЯМР [234]. Самая важная стадия процесса — образование углерод-углеродной связи — имеет элек-троциклический характер и аналогачна кляйзеновской перегруппировке фенил-аллиловых эфиров. [c.450]

    Основное преимущество жидких реагентов (гидразин, аммиак, спирты) по сравнению с газообразными — удобство хранения и транспортировми. В ряде исследований [3.8] подробно рассмотрены конструктивные осо-беиности и механизм действия жидкостных электродов. При работе жидкостных электродов реализуются два способа организации транспорта реагентов и продуктов реакции — это диффузионная подача реагента (а также удаление продукта) и принудительная подача в виде направленного потока. Каждый из этих способов имеет свои преимущества и недостатки. Эффективность использования пористых электродов при указанных способах подачи реагантов будет зависеть от соотношения скоростей электрохимической реакции и ввода реагента. На практике представляются возможными три схемы работы пористых электродов в диффузионном режиме лодач1И реагента  [c.94]


    Однако поскольку работа с газообразным фторидом водорода достаточно опасна и поскольку образующиеся усы не всегда имеют правильную форму, был предложен другой метод [164], основанный на использовании NH4HF2, который при нагревании разлагается на фторид водорода и аммиак. Капилляры вначале обрабатывают концентрированной хлороводородной кислотой при 80°С, после чего промывают дистиллированной водой и органическими растворами и высушивают, а затем заполняют 5%-ным раствором NH4HF2 в метаноле и выдерживают в течение часа. По окончании выдержки раствор вытесняют подаваемым с постоянной скоростью азотом, запаивают капилляр и выдерживают его 3 ч при 450°С. В обработанных таким образом капиллярах наблюдалось образование усов длиной 4 мкм. Предполагается следующий механизм образования усов фторид водорода реагирует со стеклом, в результате чего образуется фторид кремния, который и превращается в усы — оксид кремния. Методами рентгеновской и оже-электронной спектроскопии было подтверждено, что усы образованы оксидом кремния [187, 188, 226]. [c.72]

    Реакции а-галоидкетонов или а-галоидальдегидов с р-кето-эфирами (или р-дикетонами) в присутствии таких оснований, как гидроокись натрия или пиридин, приводит к образованию фуранов. Механизм реакции, вероятно, включает первоначальное О-мкилирование с последующей Сз—С4-циклизацией. При использовании азотистых оснований, таких, как аммиак или первичный амин, реакция этих соединений с кетоэфиром обычно предшествует конденсации с галоидкарбонильной компонентой, и в основном образуется пиррол. Пиррол получается из промежуточного енамина, который претерпевает обычное для енаминов С-алкили-рование с последующей N — Сг-циклизацией. [c.104]

    В упомянутой выше работе [928] фактически предполагается, что в промежуточных стадиях реакции участвуют не только поверхность, но и объемная фаза катализатора. Эти промежуточные стадии постулируются для каждого процесса, причем указывается, что в случае оптимального катализатора такие стадии должны протекать легко, с возможно более близкими тепловыми эффектами. При этом не учитывается действительный механизм рассматриваемых ими продессов (например синтеза аммиака). Отождествление свойств поверхностных и объемных соединений в некоторых случаях возможно в первом приближении, если избыточная свободная энергия поверхностных соединений невелика однако в общем случае такое предположение не может быть оправданным. Г. И. Голодец и В. А. Ройтер [1243], хотя и расценивают расчеты с использованием термодинамических величин для объемных (а не поверхностных) соединений как грубое приближение, но считают такой прием возможным. Они проанализировали данные для ряда реакций с точки зрения выполнения условия (ХП.26) и отмечают согласие расчетов с опытом. [c.469]

    Изатин можно рассматривать как о-хинон индола, и поэтому представляется целесообразным испытать, не действуют ли как катализаторы дегидрирования также и другие о-хиноны. В 1928 г., через год после открытия катализа изатином, Эдль-бахер и Краус [И 1] нашли, что гликоколь дегидрируется кислородом воздуха в слабошелочной среде в присутствии адреналина. При этом, как и при дегидрировании изатином, в качестве продуктов распада выделяется формальдегид, аммиак и двуокись углерода. Киш [112] в многочисленных работах исследовал эту реакцию подробнее.. Он нашел, что, подобно адреналину, в качестве катализаторов дегидрирования гликоколя может быть использован также пирокатехин и некоторые из его производных. Киш предположил, что производные пирокатехина сперва дегидрируются кислородом воздуха до о-хинонов, которые потом уже в свою очередь разрушают аминокислоты. Если бы этот механизм был подтвержден, то катализ о-хинонами был бы сходен с катализом изатином. Однако этому противоречит тот факт, что резорцин также катализирует дегидрирование, хотя он не может образовать о-хинон. [c.49]

    Обычно сульфонамиды получают обработкой сульфонилхлоридов аммиаком, первичными или вторичными аминами в присутствии основания (уравнения 59, 60) [2, 106]. В качестве побочного продукта обычно образуется дисульфонамид (RS02)2NR, особенно в тех случаях, когда в реакции используется недостаточное количество амина. Методы получения сульфонамидов описаны в нескольких обзорах [2, 106, 107] периодически выходят обзоры, посвященные вопросам механизма и препаративного использования реакции [7, 34]. [c.529]

    Бесман и Бесман [23] предложили объяснение механизма печеночной комы, основанное на том, что аммиак может нарушать использование а-кетоглутаровой кислоты в тканях. Можно ожидать в этих условиях торможения реакций цикла лимонной кислоты и тем самым окислительного обмена в мозге. Согласно этой гипотезе, высокие концентрации аммиака должны вызывать усиленное образование глутаминовой кислоты и а-кетоглутаровой кислоты. Эта реакция, катализируемая глутаматдегидрогеназой, способствовала бы быстрому связыванию а-кетоглутаровой кислоты. Рекнагель и Поттер [28], исследуя кетогенное влияние аммиака в опытах с кашицей печени, нашли, что в присутствии хлористого аммония происходит превращение а-кетоглутаровой кислоты в глутаминовую это приводит к снижению образования щавелевоуксусной кислоты, вследствие чего обмен дыхательных субстратов переключается в сторону образования ацетоуксусной кислоты. [c.465]

    Образование соединения НзЫ-ВРз происходит за счет того, что неподеленная электронная пара аммиака занимает вакантную орбиталь фторида бора (рис. 16,в). При этом у хменьшается потенциальная энергия системы и выделяется эквивалентное количество энергии. Подобный механизм образования называют донорно-акцепторным, а донором — такой атом, который отдает свою электронную пару для образования связи (в данном случае атом азота) атом, который, предоставляя вакантную орбиталь, принимает электронную пару, называется акцептором, (в данном случае атом бора). Донорно-акцептор-пая связь является разновидностью ковалентной связи, В соединении НзМ-ВРз азот и бор — четырехвалентны. Атом азота повышает свою валентность от 3 до 4 в результате использования неподеленной электронной пары для образования дополнительной химической связи. Атом бора повышает валентность за счет наличия [c.94]

    Окисление окиси углерода с окисномедным катализатором [1], а также окисление этилена в присутствии серебряного катализатора [2] являются классическими примерами реакций гетерогенно-каталитического окисления. Непрерывные и тщательные исследования поверхностных реакций с участием окиси углерода привели к лучшему пониманию роли, которую играет катализатор. Совсем недавно изучение каталитического окисления различных углеводородов с помощью окиснометаллических катализаторов позволило получить дополнительные сведения о механизме реакций гетерогенного окисления [3]. Многие гетерогенно-каталитические реакции окисления служат основой важных промышленных процессов. В настоящее время каталитическое окисление толуола, ксилола и нафталина с использованием окислов металлов в качестве катализаторов [4] прочно вошло в практику как удобный метод крупномасштабного производства фталевого и малеинового ангидридов. Каталитическое окисление аммиака в присутствии платинового катализатора дает окись азота и поэтому используется при производстве азотной кислоты [5, 6]. Промышленное значение имеет также реакция окисления двуокиси серы в присутствии либо платинового катализатора [7], либо пятиокиси ванадия [8]. Так как все эти реакции были изучены в значительной степени, в данном разделе рассматриваются лишь отдельные примеры, достаточные для того, чтобы продемонстрировать основные принципы, играющие в катализе важную роль. [c.315]

    Очень активны в изомеризации олефинов твердые основания с большой удельной поверхностью, например Na/Al 2О3. Так, равновесие при изомеризации пентена-1 достигается через 60 мин даже при 30° С при изомеризации бутена-1 для этого требуется всего 0,6 мин при 25°С [113, 114]. Окись кальция, полученная прокаливанием гидроокиси при 500 или 900°С (с последующим отжигом при 500°С) или прокаливанием карбоната кальция при 900°С, ведет перемещение двойной связи в гексене-1 [115]. Поскольку основания (аммиак, пиридин) не отравляют катализаторы изомеризации, последняя, как полагают, протекает по механизму, включающему образование промежуточных аллильных ионов. Аналогичный механизм постулирован [113] и для изомеризации алкенов, катализируемой основаниями. Кларк и Финч [116] на основании результатов, полученных при отравлении аммиаком, H-D-обмене и использовании радиоуглерода пришли к заключению, что изомеризация бутена-1 на окиси магния может протекать по анионному механизму, несмотря на то, что катализатор обладает кислотными свойствами. Известно также, что стереоселективная изомеризация бутена-1 в цис- и йраис-бутены-2 [117] и перемещение двойной связи в ли-монене [118] катализируются основаниями, в частности окисью кальция. [c.156]

    В растворителях с низкой диэлектрической проницаемостью типа трет-бутилового спирта или тетрагидрофурана и при использовании оснований — доноров протонов — типа аммиака, про-пиламина или дипропиламина величина Л обм/Аграц значительно превышает единицу (опыты № 1—5). В присутствии значительных концентраций аммиака (опыт № 3) или при использовании растворителя, способствующего диссоциации ионных пар (диметилсульфоксид) отношение ko5Jkpaц близко или равно единице. Механизм, объясняющий эти результаты, изображен на рис. 5. [c.101]

    Возможен ряд механизмов для реакции рацемизации, и большая их часть была обнаружена экспериментально. Если карбанион плоский и симметричный, то любой процесс, ведущий к симметризации аниона, сопровождается рацемизацией. В табл. 37 приведены три типа условий, приводящих к рацемизации при использовании флуорена (П1) в качестве субстрата. 1. Как нейтральное, так и анионное основание в диссоциирующем, но не гидроксильном растворителе дает /Собм/А рац = 1 Так, например, для системы П1 с аммиаком в диметилсульфоксиде наблюдается полная рацемизация (опыт Л" 6). В этой среде либо активными основаниями являются диссоциированные ионы, либо в случае образования ионных пар диссоциация протекает быстрее, чем образование оптически активного продукта обмена. 2. Использование четвертичного аммониевого основания в недиссоциирующем растворителе дает значение /Собм/А рац= 1. В опыте № 8 фенолят тетраметиламмония в смеси бензол — фенол приводит к полной [c.105]


Смотреть страницы где упоминается термин Аммиак механизм использования: [c.194]    [c.478]    [c.197]    [c.565]    [c.62]    [c.263]    [c.392]    [c.180]    [c.513]    [c.584]    [c.253]    [c.267]    [c.204]    [c.6]    [c.76]    [c.547]    [c.599]    [c.410]    [c.565]    [c.403]    [c.348]    [c.547]    [c.599]    [c.380]    [c.216]   
Биохимия аминокислот (1961) -- [ c.173 ]




ПОИСК







© 2025 chem21.info Реклама на сайте