Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Керамика также Глина

    Основным механизмом различных форм пептизации и коагуляции глинистых суспензий, а также методов предотвращения или регулирования этих процессов — ингибирования, стабилизации, коллоидной защиты — являются процессы обмена, замещения и присоединения на поверхности твердой фазы. Глины, являясь носителями значительной физико-химической активности, интенсивно взаимодействуют с окружающей средой, образуя большую гамму адсорб ционных и хемосорбционных соединений. Простейшая форма взаимодействия — гидратация и связанные с ней процессы, уже рассмотрены ранее. Большое практическое значение имеют взаимодействия с другими соединениями как органическими, так и неорганическими, возникающие при этом связи с поверхностью частиц и ее модифицирование. Эти процессы, помимо буровых растворов, охватывают широкий круг других областей — почвоведение, керамику, применение глин в качестве адсорбентов, катализаторов, формовочных материалов и наполнителей и т. п. Монографии Р. Грима [9, 10] и Ф. Д. Овчаренко [30] содержат большой обзорный материал по этим вопросам. [c.60]


    Под общим названием керамика рассмотрим широкую гамму продуктов, основным исходным материалом которых является природная глина. К их числу относят стройматериалы (кирпич, черепицу, трубы), а также тончайший художественный фарфор, который может быть предметом национальной гордости. [c.281]

    Для промышленного изготовления кордиеритовой керамики используют природные материалы тальк, высококачественные огнеупорные глины и технический глинозем. Температура обжига 1300—1410°. В кордиеритовой керамике содержится около 80% кордиерита, а также муллит, клиноэнстатит, корунд и стекло. [c.141]

    Керамика-это изделия, изготовленные из обожженной глины. Однако данный термин обобщили на любые изделия, получаемые обжигом высокодисперсных веществ. Появилась керамика из чистых оксидов, нитридов и других соединений, а также металлокерамика - материалы, полученные спеканием металлических порошков. [c.339]

    Глины находят очень широкое применение в строительстве. В качестве строительного материала обычно используются повсеместно встречающиеся железистые полиминеральные глины в сыром виде либо после обжига при высоких температурах — в виде красного строительного кирпича, черепицы и т. д. Глина также используется в качестве сырья при производстве цемента. Огнеупорные и тугоплавкие глины являются сырьем для различных керамических производств. Каолин используется в производстве тонкой керамики фарфора, фаянса, а также применяется как наполнитель в бумажной, резиновой и других отраслях промышленности. [c.118]

    Искусственные силикаты широко используются также в виде разного рода керамики. Керамические изделия получают при высушивании и обжиге тестообразных масс, замешанных на различных силикатах (глина и др.) при этом происходит частичное спекание отдельных составных частей. К таким изделиям относятся кирпич, гончарные трубы, огнеупорные материалы, а также фарфор и фаянс. [c.199]

    Структурно-механические критерии определены для масс строительной керамики, каолинов и фарфоровых масс, а также для буровых промывочных жидкостей. Установив структурно-механический тип глины и сопоставив ее характеристики с критериями заданного технологического процесса, можно решить, какие изменения должны быть внесены в процесс структурообразования паст и суспензий этой глины и какими методами следует регулировать ее технологические свойства. Наиболее эффективными методами регулирования свойства структур в системе глина — вода являются введение малых количеств электролитов, поверхностно-активных веществ или защитных коллоидов, составление шихт и механическая обработка. [c.22]


    На кафедре ведутся также теоретические и экспериментальные работы по сушке литейных стержней, глин и керамики, на основании которых разработан экспресс-метод определения чувствительности глин к сушке. На разработанный экспресс-метод получено авторское свидетельство. Он внедрен на ряде предприятий и НИИ городов Москвы, Киева, Львова и др. [c.76]

    Носители неорганической природы. В качестве носителей наиболее часто применяют материалы из стекла, глины, керамики, графитовой сажи, силикагеля, а также силохромы, оксиды металлов. Их можно подвергать химической модификации, для чего носители покрывают пленкой оксидов алюминия, титана, гафния, циркония или обрабатывают органическими полимерами. Основное преимущество неорганических носителей — легкость регенерации. Подобно синтетическим полимерам неорганическим носителям можно придать любую форму и получать их с любой степенью пористости. [c.87]

    КЕРАМИКА ж. Материалы и изделия, получаемые спеканием глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений. [c.179]

    В новейших патентах [147] также описываются различные способы получения аналогичных пористых веществ и пористой керамики. Типичный рецепт включает следующие составные части глину, гипс, воду, небольшое количество смачивающего агента, перекись водорода, едкий натр для повышения pH до 8—10 и катализатор разложения перекиси водорода, например сульфат двухвалентного марганца. Пористый бетон, полученный с применением пере- [c.509]

    К силикатным относятся следующие сырьевые материалы — песок, глина, пегматит, полевой шпат, а также вырабатываемые из них керамика, стекло, цемент и др. [c.13]

    Керамикой обычна называют изделия из различных видов минерального сырья, главным образом из глины, а также из магнезита, доломита, кварцита, талька и тому подобных материалов, изготовленные путем формования или отливки с последующей сушкой и обжигам до спекания. Керамические изделия широко применяются в различных отраслях техники, в строительстве и в быту. Наиболее распространенным видом керамических изделий является кирпич, широко применяемый в строительстве для кладки стен, печей, газоходов и др. [c.611]

    Кислотоупоры, представляющие собой обожженную до спекания массу из кислотоупорных глин, шамота, песка и полевого шпата, поставляют в виде прямого или клинового кирпича, плиток или фасонных изделий, а также в виде труб и фасонных частей к ним. Вяжущие материалы для футеровки плит из кислотоупорной керамики, называемые силикатными замазками, составляют на основе кислотоупорных цементов и жидкого стекла. Необходимо строго выдерживать технологию их приготовления и нанесения на поверхность аппарата и плит, включая температуру, при которой производятся работы (обычно в пределах 15—25°С). [c.123]

    Контактный метод производства серной кислоты возник в 1831 г., когда П. Филипс (Англия) предложил окислять сернистый ангидрид непосредственно кислородом воздуха при пропускании газовой смеси через накаленный платиновый катализатор. Позднее было установлено, что катализаторами реакции окисления сернистого ангидрида в серный ангидрид являются также окислы некоторых металлов, например железа, меди, хрома и др., а также фарфор, керамика, глины и многие другие вещества. [c.12]

    Сырьем для получения силикатной керамики служат глина, измельченный шамот (обожженная глина), полевой шпат и кварцевый песок. Для приготовления химически стойкой керамики применяют глины, содержащие от 20 до 40% AI2O3, от 50 до 75% ЗЮг и минимальные количества СаО и РегОз. Шамот играет роль скелета, вокруг которого формируются частицы глины. Песок предотвращает сильную усадку при обжиге, а полевой щпат играет роль плавня, облегчающего получение плотной керамики. Введение в шихту плавленых SiO , глинозема, Si и муллита улучшает механические свойства такой керамики. Пластичную массу, получаемую из смеси указанных веществ при добавлении воды, подвергают формованию или прессованию, а затем сушат и обжигают при достаточно высокой температуре (так называемая керамическая технология получения материалов). Недостатками силикатной керамики являются хрупкость и чувствительность к перепадам температур. Поэтому керамические конструкционные материалы эксплуатируют, избегая ударов, толчков, натяжений, а также резких колебаний температуры. Среди силикатной керамики важнейшим видом является фарфор, получаемый спеканием тонкодисперсных материалов, состоящий из кристаллической и стеклообразной фаз. Как конструкционный материал чаще всего используют [c.151]

    Кроме цемента и гипса, магнитная обработка ускоряет твердение других вяжущих материалов — глины, жидкого стекла. В суспензиях глин, полученных на магнитоактивированной воде, выявлена (с помощью электронной микроскопии) более совершенная кристаллизационная структура. Поэтому прочностные и некоторые другие характеристики готовых изделий (кирпича, керамики) также отличаются прочность и плотность становятся выше, пористость и водопогло-щение — меньше. [c.73]


    Керамическими материалами или керамикой называют по-ликристаллические материалы и изделия из них, полученные спеканием природных глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений. Керамические материалы весьма разнообразны и могут быть классифицированы по нескольким признакам. [c.321]

    Термоградиентный коэффициент в указанном выше температурном интервале также не зависит от температуры. С увеличением водонасыщенностн до 0,3—0,4 этот коэффициент почти линейно растет. При дальнейшем росте водонасыщенностн значения коэффициента стабилизируются. В песках и песчаниках величина термоградиентного коэффициента составляет (0,3—0,5)10 1/К,, в глинах (0,1—0,15)10-2 1/К, а в каолинах и керамике (0,2— —0,3)10-3 1/К. [c.158]

    Необходимо отметить положительную работу по органи зации опытного производства по использованию отходов в АО - 7 улаугол . . На закрытой шахте Каменецкая из глины терриконика организовано новое производство изделий из керамики, а также краски, цветной черепицы для крыш, наполнителя для пластмасс и порошка — пигмента. Подобную установку предполагают смонтировать на шахте № 26, а также организовать производство до пяти видов органо-минеральных удобрений. [c.85]

    Проведенные исследования показали, что на среднепластическую глину (1 тип) первые три осадка оказывают близкое по характеру и интенсивности воздействия снижают огневую усадку и пластичность обожженного материала. При этом происходит также снижение прочности сухого материала и обожженной керамики. Воздействие орского шлама характеризуется наличием экстремальной точки. В интервале добавки до 15 % по сухому веществу наблюдается рост прочности обожженной керамики на 30-35 % по сравнению с одной глиной, плотность материала уменьшается с 1815 до 1635 кг/м . Дальнейшее увеличение дозы шлама меняет характер зависимости при переходе за 15 % прочность снижается, но даже при 30 %-ной добавки она выше, чем у контрольного образца. Плотность керамики при этом монотонно снижается до 1435 кг/м . Связность массы, оцениваемая по прочности сухого материала, во всем диапазоне доз шлама остается неизменной. [c.221]

    КЕРАМИКА (греч. keramike - гончарное искусство, от keramos-глина), неметаллич. материалы и изделия, получаемые спеканием глин или порошков неорг. в-в. По структуре К. подразделяют на грубую, имеющую крупнозернистую неоднородную в изломе структуру (пористость 5-30%), и тонкую-с однородной мелкозернистой структурой (пористость <5%). К грубой К. относят мн. строит, керамич. материалы, напр лицевой кирпич, к тонкой - фарфор, пьезо- и сегнетокерамику, ферриты, кер-меты, нек-рые огнеупоры и др, а также фаянс, полуфарфор майолику В особую группу выделяют т. наз. высокопористую К (пористость 30-90%), к к-рой обычно относят теплоизоляц керамич. материалы [c.371]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Рассмотренные линейные зависимости отношения Е/Ео от разности скоростей Ас справедливы для оценки модулей Юнга пористых керамик, применяемых в ядер-ных установках, конструкционных керамик, материалов на основе глины, сверхпроводящих керамик, а также металлоке-рамик в пределах более чем двукратного изменения Е. Расхождение теоретических результатов с экспериментальными данными обусловлено разными размерами, формой и распределением пор в объеме материала. Приведенные зависимости справедливы только для материалов, полученных методом спекания из порошка. Они не относится к материалам, полученным по пенообразующим технологиям. [c.808]

    Теория Нортона и Джонсона положена в основу практики дефлоккуляции керамических смесей процессе отливки. Эти авторы старались выяснить, почему добавка едкого натрия вызывает значительно более слабый эффект, чем добавка углекислого натрия или, лучше, иликata натрия (жидкого стекла, см. выше). Они также ясно представляли роль естественных, загрязняющих примесей солей кальция, сульфатов и т. д. в глинах, используемых для керамики. Произведение растворимости =Санион Скатион продуктов реакции в смеси глинистого раствора и дефлоккулятора определяет эффективность уменьшения вязкости чем менее растворимы соли, осажденные такими реакциями, тем полнее будет дефлоккуляция. В особом случае присутствия сульфатов в сыром глинистом материале, превращение растворимых ингредиентов в нерастворимые можно [c.365]

    Белизна керамического черепка имеет особое значение при изготовлении фарфоровых изделий хозяйственного и художественного назначения, фаянсовых изделий, а также при оценке качества каолинов и беложгущихся глин, используемых в качестве сырья в производстве изделий тонкой керамики. [c.370]

    Земная кора почти по. шостью состоит из силикатов и двуокиси кремния, представляющих собой основную массу всех горных пород и почв, глин и песков — продуктов распада горных пород. Все неорганические строительные материалы от естественных горных пород (таких, как гранит) до искусственных материалов (кирпич, цемент, строительные растворы) представляют собой силикаты. К силикатам относятся также керамика и стекло. Металлические руды и другие минеральные отложения составляют незначительную часть массы земной коры. В нижеприведенной таблице, составленной Гольдшмидтом, приведен средний состав литосферы для сравнения указан и состав гидросферы. [c.535]

    Кислотоупорные керамические изделия изготовляются из специальных сортов глины путем формования и последующего обжига. Керамические материалы обладают высокой стойкостью к минеральным кислотам (за исключением плавиковой кислоты) в несколько меньшей степени они стойки в растворах щелочей. Керамика стойка также ко всем органическим растворителям. Изделия из нее являются весьма долговечными. Они обычно выходят из строя не в результате коррозии, а вследствие механического разрушения. Из керамики изготовляют небольшие емкостные аппараты (бачки, монл-сусы), поверхностные абсорберы (туриллы, целляриусы), небольшие колонные аппараты, трубопроводы и трубопроводную арматуру. Широкое распространение находит керамическая плитка для футеровки аппаратов, а также насадочные керамические кольца для колонных и башенных аппаратов. [c.24]


Смотреть страницы где упоминается термин Керамика также Глина : [c.151]    [c.151]    [c.154]    [c.16]    [c.16]    [c.121]    [c.293]    [c.571]    [c.574]    [c.575]    [c.755]    [c.381]    [c.556]    [c.634]    [c.770]    [c.754]   
Химия коллоидных и аморфных веществ (1948) -- [ c.287 , c.446 , c.465 ]




ПОИСК





Смотрите так же термины и статьи:

Глины

Керамика



© 2024 chem21.info Реклама на сайте