Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные среды силикатные

    В нефтехимических процессах (производство присадки, серной кислоты, хлорбензола и т. п.) для защиты внутренней поверхности оборудования от воздействия наиболее агрессивных сред применяют футеровку штучными кислотостойким , материалами на арзамите или силикатном связующем. Очень широко применяют в отрасли торкрет-бетонные футеровки. В отдельных случаях для защиты от коррозии используют и химически стойкие лакокрасочные покрытия (до температур 100— 110°С). [c.74]


    Благодаря большой химической стойкости при невысоких температурах углеграфитные материалы применяют для изготовления аппаратуры и машин, работающих в химически агрессивных средах. Эти материалы устойчивы против коррозии. Графитные детали незаменимы при работе с горячей фосфорной кислотой и соединениями фтора, когда силикатные материалы не пригодны. [c.4]

    Защитные покрытия в основном подразделяются на две группы — неметаллические и металлические. В свою очередь неметаллические покрытия бывают органическими (лаковые, битумные, пластмассовые, эпоксидные, резиновые и др.) и неорганическими (цементные, асбоцементные, окисные, силикатные, фосфатные, сульфидные и др.). Часто в защитных системах применяют комбинации из органических и неорганических покрытий, например фосфатирование перед нанесением лакокрасочного покрытия для улучшения адгезии органического покрытия и одновременно его защитной способности. Металлические покрытия отличаются от органических тем, что они непроницаемы для коррозионной среды. Однако в них имеются дефекты — поры, царапины, посторонние включения и др., которые создают предпосылку для коррозионного воздействия на основной металл. При наличии пор в коррозионном покрытии коррозионное действие агрессивной среды зависит от электрохимического поведения обоих металлов — основного и металла покрытия. По этому признаку покрытия делятся на катодные и анодные. По отношению к стали, например, цинковое покрытие является анодным, а медное — катодным, т. е. цинковое покрытие оказывает защитное действие по отношению к стали, но при этом само разрушается, а медное покрытие в результате гальванического действия повышает скорость коррозионного разрушения стали. [c.35]

    Крышки аппаратов. Защиту крышек выбирают в зависимости от состава паров агрессивной среды, возможности попадания брызг или аварийного переполнения технологической среды, температуры, давления других параметров. Для покрытия используют лакокрасочные материалы на основе ПХВ или эпоксидных материалов с армированием или без него жидкие гуммировочные составы гуммирование листовыми резинами (в этом случае крышка должна быть съемной или разъемной) штукатурку силикатной или полимерной замазкой по приваренной сетке футеровку керамическими или диабазовыми плитками (только конических или сферических крышек). Практикуется также изготовление крышек целиком из химически [c.99]

    Применяемые в технике для защиты от коррозии и в строительстве силикатные материалы ио поведению в агрессивных средах разделяются на три группы, [c.35]


    Физическое состояние агрессивной среды имеет существенное значение для развития коррозионных процессов, протекающих в газообразной и жидкой фазе, так как твердая фаза не агрессивна по отношению к сухим силикатным материалам. Если поверхность соприкасается с влагой воздуха и на ней образуются тончайшие слои насыщенного раствора пылевидного материала, твердая фаза, переходя в жидкую, становится агрессивной. [c.36]

    Поскольку жидкое стекло на поверхности, например, металла может образовывать пленку щелочного силиката и геля, кремниевой кислоты, его с успехом используют как антикоррозионное средство. Таким образом можно защитить алюминий от действия агрессивных сред. Если погрузить алюминий в раствор жидкого стекла, то на его поверхности, благодаря взаимодействию с металлом, будет оседать устойчивый кремнегель в виде защитной пленки. Силикатная обработка повышает устойчивость и алюминиевых сплавов, а также металлического цинка. Такое же противокоррозионное действие оказывает силикатизация на металлический свинец, железо, что используют, например, для предотвращения отложения железистых соединений на внутренней поверхности водопроводных труб или для защиты котлов от образования накипи. Известно также использование жидкого стекла как антикоррозионной защиты в конденсационных установках холодильных машин и в электролитических ваннах, где оно снижает разъедание железного электрода. Таким образом, коллоидные кремнеземистые пленки, образующиеся на поверхности, обусловливают применение жидкого стекла как весьма эффективного антикоррозионного средства во многих отраслях промышленности. [c.133]

    На уровне материалов это достигается не только проектированием их оптимальной структуры, включая выбор химически стойкого вяжущего, но и введением добавок, химически взаимодействующих с агрессивной средой, с образованием высокопрочных гидратных комплексов. С использованием принципа "позитивной" коррозии разработаны материалы с полимерной и силикатной матрицами, стойкие практически во всех реальных средах отраслей обоих комплексов. [c.172]

    Из битумных составов изготавливают ограждающие конструкции зданий с агрессивной средой. Для этой цели служат битумно-силикатные бетоны. Наполнитель представляет собой силикатный материал, содержащий активную окись кальция. Битумно-силикатный бетон наносят на готовый арматурный каркас. [c.12]

    Наиболее широкое применение для защиты оборудования находят футеровочные и комбинированные защитные покрытия, включающие непроницаемый подслой и футеровку штучными кислотоупорными материалами на различных химически стойких вяжущих. Выбор схемы футеровочного покрытия определяется условиями эксплуатации оборудования. Оборудование, эксплуатирующееся в условиях газообразной агрессивной среды без образования конденсата или в условиях воздействия крепкой серной кислоты (сборники крепкой серной кислоты и олеума, сушильные башни, моногидратные и олеумные абсорберы), как правило, защищают фасонной керамической плиткой на силикатной замазке. Сборники промывной серной кислоты концентрации до 45% при температуре 50—80 °С футеруют фасонной керамической плиткой на силикатной замазке по непроницаемому подслою (полиизобутилену). В указанных условиях эксплуатации кислота из-за пористости футеровочных материалов может проникнуть к металлу, разрушая его. При наличии в агрессивной среде примесей фторсодержащих соединений для защиты используют углеграфитовые изделия, а в качестве вяжущего — замазку арза-мит. В табл. 3.2 описаны ориентировочные схемы защитных покрытий оборудования. [c.168]

    Химическая стойкость силикатных материалов в агрессивных средах зависит от следующих факторов  [c.63]

    Силикатные стекла по всем показателям и в первую очередь по термостойкости ниже кварцевого стекла. По интенсивности действия на стекло агрессивные среды располагаются в следующий ряд плавиковая кислота > фосфорная > растворы щелочей > растворы щелочных карбонатов > кислоты, которые или вызывают гидролитические и ионно-обменные реакции со структурными составляющими — силикатами или взаимодействуют также с основой — окисью кремния. По химической стойкости стекла подразделяют на пять классов (гидролитическая классификация) I — неизменяемые водой П — устойчивые П1—твердые аппаратные IV—мягкие аппаратные V — неустойчивые. К каждому классу предъявляются свои требования по выщелачиванию и кислотостойкости (108, т. 5, с. 455). [c.236]

    Химической стойкостью силикатных материалов и изделий называют способность последних сопротивляться воздействию агрессивных сред — кислот, щелочей, воды и др. Определяют химическую стойкость тех материалов и изделий, которые в дальнейшем будут подвергаться воздействию кислот, щелочей и т.д. К таким материалам относятся глины, используемые для производства кислотоупорных изделий, канализационные трубы, стекла, глазурь. [c.104]


    Верхний слой футеровки, обращенный к агрессивной среде, называемый броневой защитой , обычно изготовляют из силикатных Кислотоупорных материалов. Броневая защита выполняется одинарным или двойным перекрывающим швы слоем из кислотоупорных плиток и верхним слоем из кислотоупорного кирпича, чередованием этих материалов, футеровкой блоками и т. п. Свя- [c.75]

    Верхнее покрытие пола может быть монолитным и бесшовным (кислотоупорный цемент, асфальт и др.) или может быть выполнено из штучных элементов (метлахская или диабазовая плитка, кислотоупорный кирпич и др.), уложенных по кислотостойкой замазке. Выбор зависит от характера агрессивных сред и механических воздействий. Все цементы и замазки на силикатной основе в той или иной мере проницаемы, поэтому под верхнее покрытие пола обязательно нужно укладывать непроницаемый гидроизоляционный и антикоррозионный материал. Особенно рекомендуется для этой цели листовой полиизобутилен ПСГ, который в стыках можно не только склеивать, но для большей надежности и сваривать горячим воздухом [12]. Однако полиизобутилен ПСГ совершенно неустойчив в органических растворителях и минеральных маслах. - [c.125]

    Силикатные замазки по химическому и минералогическому составу близки к штучным кислотостойким керамическим материалам. Поэтому их химическая стойкость в различных агрессивных средах практически аналогична. [c.205]

    Для футеровки аппаратуры силикатными материалами используют различной формы плитки из фарфора, керамики, диабаза. Чаще всего такая футеровка применяется для защиты стальной аппаратуры, предназначенной для работы с растворами, содержащими НС1, а также газообразными агрессивными средами. [c.33]

    Замазка арзамит обладает меньшей пористостью и большей стойкость к различным агрессивным средам, чем силикатные замазки, в присутствии катализаторов хорошо затвердевает на [c.123]

    Силикатные стекла устойчивы ко многим агрессивным средам. По мере уменьшения степени разрушения стекол химические реагенты можно расположить в ряд фтороводородная, ортофосфорная кислоты, растворы щелочей и карбонаты щелочных металлов, минеральные кислоты, вода. [c.81]

    Верхний слой футеровки, обращенный к агрессивной среде, выполняют из силикатных кислотоупорных материалов, при этом связующим материалом здесь служит силикатная кислотоупорная замазка — шпаклевка. Для защиты от воздействия на оборудование высококонцентрированной кислоты при умеренной температуре и небольших скоростях движения среды применяется андезитовая замазка, асфальт или кислотостойкие лакокрасочные материалы. [c.39]

    Агрессивная среда Концентра- ция % Силикатные материалы Полимериза пласт  [c.212]

    Характер разрушения органических веществ под действием агрессивных сред очень отличается от характера разрушения силикатных материалов. Степень разрушения этнх веиц ств большей частью определяется не убылью в весе, а наоборот, увеличением первоначальных веса и объема материала. При этом наблюдается также сильное снижение механической прочности материала. [c.360]

    В зависимости от состава, всем высокомолекулярным синтетическим материалам присущи свойства, выгодно отличающие их от металлов и от силикатных материалов. К числу этих свойств относятся простота изготовления деталей и аппаратов сложных конструкций, высокая устойчивость в агрессивных средах, низкая плотность изделий (пе превышаю Щая 1,8 Мг1м , а в большинстве случаев равная 1,0—, > Мг м ) возможность и широких пределах изменять механическую прочность для статических и динамических нагрузок как правило, высокая стойкость к истирающим усилиям хорошие диэлектрические и теило-изоляционные свойства в1)1сокне клеящие свойства некоторых полимеров (позволяющие использовать их для изготовления клеев и замазок) уплотнительные и герметизирующие свойства отдельных полимеров способность поглощать п гасить вибрации способность образовывать чрезвычайно тонкие пленки. [c.392]

    Все реакции в силикатных системах в соответствии с технологией получения изделий и их использованием можно разделить на две группы 1) пиросиликатные и 2) реакции гидратации и коррозии. К первой группе относятся реакции дегидратации, модифи-кационные превращения, реакции в твердых фазах и расплавах, ко второй — реакции силикатов с водой и агрессивными средами как при нормальных, так и при повышенных температурах и давлениях. [c.224]

    Защита травильных ванн внутри производится с непроницаемым подслоем (ПСГ, резина) с бронирующим слоем штучными материалами — кирпичом, шпунтованной плиткой толщиной 70 мм на силикатных и полимерных замазках в зависимости от агрессивной среды. Снаружи ванны необходимо защитить от возможных брызг или обливов жидкими резииовыми смесями, армированным или неармированным лакокрасочным покрытием. [c.92]

    Большинство Н. в. имеют поликристаллич. структуру, силикатные волокна-обычно аморфную. Для Н.в., получаемых газофазным осаждением, характерна слоевая гетерог. структура, а для волокон, получаемьи спеканием,-наличие большого числа пор. Мех. св-ва И. в. приведены в таблице. Чем более пориста структура волокон (напр., получаемых экструзией с послед, спеканием), тем ниже их плотность и мех. св-ва, Н, в, устойчивы во мн, агрессивных средах, негигроскопичны, В окислит, среде наиб, стойки оксидные волокна, в меньшей степени-карбидные. Карбидные волокна обладают полупроводниковыми св-вами, их электропроводность возрастает с повышением т-ры, [c.213]

    Стекло обладает высокой химической стойкостью к кислотам (кроме НР, Н3РО4, горячей Н251Рб), холодным щелочам, органическим растворителям и другим агрессивным средам. Для изготовления трубопроводов, смотровых окон используется силикатное (до 50°С) и боросиликатное (до 400 С) стекло. Для производства колонной и теплообменной аппаратуры, применяемой в производстве минеральных и органических кислот и различных реактивов, используется кварцевое стекло, отличающееся высокой термической устойчивостью (до 1000°С). Стекло устойчиво в органических и минеральных кислотах любых концентраций (за исключением плавиковой и фосфорной), но-плохо сопротивляется растворам солей и щелочам. [c.16]

    I агрессивных сред, требует создания материалов, отличающих- я комплексом свойств, из которых наиболее важными являются зысокие химическая и износоустойчивость, термостойкость, меха-шческая прочность. Особенно высокие требования предъявляются к химической устойчивости материалов, т. к. именно этим определяется срок их службы и чистота получаемого продукта. Перспективными среди конструкционных силикатных материалов в настоящее время являются ситаллы, которые по совокупности физико-механических свойств имеют значительные преимущества по сравнению с другими. Их высокая износо- и термостойкость, механическая и жаропрочность при одновременной высокой химической устойчивости позволяют применять их в условиях воздействия агрессивных сред как при низких, так и при повышенных температурах. [c.105]

    ГИДРОИЗОЛЯЦИОННЫЕ МАТЕ-РИ.4ЛЫ — материалы для защиты строительных конструкций, зданий и сооружений от увлажнения и фильтрации воды. Некоторые Г. м. защищают от воздействия агрессивных сред. Г. м. обладают водонепроницаемостью (см. Водопроницаемость), прочностью и долговечностью. Различают Г. м. антифильтрациопиые, антикоррозионные и герметизирующие окрасочные, штукатурные, ок-леечные и засыпные. К окрасочным Г. м. относятся силикатные и цементные краски. Силикатные краски представляют собой суспензию тон-коизмельченной пигментной смеси в водном растворе калиевого жидкого стекла. В состав пигментной смеси входят цинковые белила, щелочностойкий пигмент и наполнители (мел, тальк, песок, маршаллит, гранулированный шлак). Свойства составляющих силикатных красок тонина [c.278]

    Обкладки из листовых материалов на основе каучуков используют также в качестве элементов комбинированных защитных обкладок, состоящих из различных коррозионностойких материалов. Напр., наполненный сажей и графитом листовой полиизобутилен марки ПСГ применяют в качестве нижнего слоя футеровки из метлахских плиток, кирпича или др. силикатных материалов. Такие покрытия, не нуждающиеся в термич. обработке, используют для защиты не только металлических, но и железобетонных конструкций. Полиизобу-тнлен выполняет в этом случае роль барьера, препятствующего проникновению к защищаемой поверхности агрессивных сред, к-рые могут просочиться через верхние слои футеровки вследствие капиллярности чамазки или другого связующего. С другой стороны, жесткая часть футеровки предохраняет полиизобутиленовын слой от оползания при эксплуатации в условиях повышенной темп-ры (>80 °С). [c.329]

    На трубопроводах, транспортирующих катализаторный раствор, применяют пробковые краны из серого чугуна вследствие коррозии их заменяют каждые 1—2 месяца. На линиях соляной кислоты. установлены простейшие вентили с резиновыми вкладышами. Максимальный срок службы таких устройств не превышает 3 месяцев. Из вентилей промышленного изготовления для солянокислых растворов используются диафрагменные чугунные вентили конструкции ЦКБА. Корпуса этих вентилей защищены винипластом, полиэтиленом, фторопластом-4, фаолитом А или силикатной эмалью, а мембраны (диафрагмы) выполнены из резины, полиэтилена или фторопласта-4. Срок службы мембран зависит не только от агрессивной среды и температуры, но также и от того, как часто открывают и закрывают вентиль. Поэтому при прочих равных условиях вентили этой конструкции лучше устанавливать в тех местах, где открывать их будут не слишком часто. [c.262]

    В условиях высоких температур скорость контактных процессов возрастает многократно, так же как и скорость структурных превращений в слое покрытия и в самом материале. В результате указанных нежелательных явлений наступает разрушение покрытия даже в отсутствие внешней агрессивной среды. Самопроизвольное разрушение металлических и ме-таллоподобных покрытий происходит, как уже говорилось выше, в результате рассасывания, а керамических (силикатных) и керамоподобных — по причине перерождения, вызывающего отслаивание. [c.265]

    В химической, нефтехимической и ряде других отраслей про-мьишенностя большое количество оборудования, сооружений и ксж -муникаций с повшеняыми температурами агрессивных сред футеруется изнутри неметаллическими, главным образом, силикатными материалами. Футеровки выполняют роль антикоррозионных и теплоизоляционных П01фытий. №с толщина достигает 300-500 мм. [c.60]

    Исследован комплекс физико-механических свойств композиционных материалов на основе эпоксддных и полиэфирных смол в зависимости от степени наполнешш, природы (силикатный й углерод-соде1жащий) наполнителей, действия жидкой агрессивной среды, а также кинетика изменения их прочностных и деформативных свойств при контакте с агрессивной средой. [c.133]

    Установлено, что пронидаемость и, следовательно,физико ае-ханические свойства наяолненнш композиций изменяются под воздействием агрессивных сред тем значительнее, чем выше степень наполнения. Композиции с углеродсодержащим наполнителем при прочих равных условиях изменяют исходные прочностные и дефораатив-ные свойства в меньшей отепени, чем с силикатными. [c.133]


Смотреть страницы где упоминается термин Агрессивные среды силикатные: [c.664]    [c.333]    [c.629]    [c.686]    [c.332]    [c.63]    [c.86]    [c.130]    [c.35]    [c.116]    [c.133]   
Коррозионная стойкость материалов (1975) -- [ c.250 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.250 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды



© 2024 chem21.info Реклама на сайте