Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрия деление

    Форма и строение митохондрий у различных микроорганизмов неодинаковы. Даже у одной и той же культуры при различных условиях и фазах роста форма и величина митохондрий меняется. В клетках дрожжей, перенесенных из аэробных условий в анаэробные, митохондрии теряют выраженную форму и образуются мембраны неопределенной формы. В бактериях функцию митохондрий выполняют особые образования цитоплазматической мембраны — мезосомы. Следовательно, в клетках бактерий аналогами митохондрий являются мезосомы. Как число митохондрий, так и число мезосом меняется, оно резко возрастает перед процессом деления клетки. Мезосомы бактерий специализируются в выполнении различных функций. Некоторые из них [c.19]


    Что происходит во время митоза с митохондриями Они, как и хлоропласты в растительных клетках, делятся. Следовательно, на опреде- ленных стадиях клеточного цикла в этих органеллах происходит репликация ДНК- По крайней мере в ряде случаев деление митохондрий так связано с клеточным делением, что среднее число митохондрий в расчете на дочерние клетки остается строго постоянным. Аналогичное яв- ление наблюдается и в клетках низших организмов, содержащих водо- [c.39]

    Подробно изучено клеточное деление и описаны хромосомы Открыты хлоропласты Открыты митохондрии Открыт аппарат Гольджи [c.169]

    Наличие ядра является главной, но не единственной структурной особенностью эукариотических клеток. В цитоплазме существует ряд других внутриклеточных органелл, окруженных своими собственными мембранами. Окислительное фосфорилирование и ряд предшествующих стадий окисления органических соединений протекают в митохондриях. Эти органеллы окружены двумя фосфо-липидными мембранами. Внутренняя мембрана, построенная из специфических белков, участвует в сопряжении переноса электронов от органических соединений к кислороду с фосфорилированием АДФ. Еще более сложными органеллами являются хлоропласты, в которых проходят все стадии фотосинтеза. Уникальной особенностью этих двух типов органелл является то, что они содержат ДНК, которая реплицируется перед их делением и несет информацию о некоторых белках и РНК, необходимых для формирования и функционирования этих органелл. Тем не менее большая часть информации, необходимой для производства всего набора как митохондриальных, так и хлоропластных белков, находится в хромосомной ДНК. [c.25]

    П. представлены большой группой ферментов. ДНК-за-висимые ДНК-полимеразы участвуют в репликации (удвоении) ДНК в цикле деления клетки, репарации (устранении дефектов) ДНК и репликации ДНК митохондрий и хлоропластов матрицей для синтеза ДНК, катализируемого этими ферментами, служит односпиральная ДНК. Все семейства, роды и виды известных живых организмов содержат ферменты, не содержащие коферменты, и отличающиеся по мол. массе, кол-ву субъединиц, pH, при к-ром фермент обладает макс. активностью. [c.625]

    Содержимое всех живых клеток отделено от окружающей среды специальными структурами - биомембранами, которые обычно называют прото-плазматическими мембранами. У растений и бактерий наряду с такими мембранами снаружи клетки еще имеется клеточная стенка. Для эукариотических клеток характерно деление внутреннего содержимого клетки на отдельные отсеки, или компартменты. Они представляют собой субклеточные органеллы, ограниченные мембранами, например, ядро митохондрии, аппарат Гольджи. Однако мембраны служат не только поверхностями раздела. По существу, мембраны представляют собой сложные по строению и разнообразные по функциям биохимические системы. [c.106]


    Метод культивирования отдельных клеток позволяет изучить действие ряда соединений на скорость процесса клеточного деления, возникновения элементов клеточных стенок, изменений в числе митохондрий и т. д. Трудоемкость указанного метода ограничивает его применение для серийных исследований. [c.19]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]

    Хлоропласты в зеленых частях растения не являются (как и митохондрии) стабильными структурами. Они постоянно изменяются по величине, форме и числу. Хлоропласты способны расти и испытывать деление, так что из одного хлоропласта получаются два дочерних. [c.207]

    В период перед митозом (размножением) весь хроматин концентрируется в хромосомах. Хромосомы, состоящие из молекул ДНК, являются хранилищем информации о свойствах клетки и синтезе всех белков, необходимых ей в течение жизни, за исключением белков митохондрий. При почковании или делении весь генный аппарат клетки удваивается, каждая клетка получает полный набор хромосом и вместе с ним всю сумму информации, обеспечивающую ее рост и развитие. В период деления ядра ядрышковой субстанции не обнаруживается. У дрожжей при расщеплении хромосом не наблюдается ресорбции ядерных мембран (явление эндомитоза). Количество хромосом в ядрах дрожжей зависит от родовых особенностей. [c.29]

    По мере роста и деления клеток в их цитоплазме должны образовываться новые органеллы. В неделящихся клетках тоже происходит непрерывное обновление органелл - вместо распадающихся образуются новые. Для этого требуется регулируемый синтез необходимых белков и липидов с последующей доставкой каждого компонента в надлежащий участок органеллы. В гл. 8 уже рассматривался перенос определенных белков и липидов, синтезированных вне органелл, в митохондрии и хлоропласты, а здесь речь пойдет о вкладе этих органелл в их собственный биосинтез. [c.485]

Рис. 75. Схема поведения митохондрий (Л1) при делении сперматоцитов скорпиона [507]. Рис. 75. Схема поведения митохондрий (Л1) при делении сперматоцитов скорпиона [507].
    Загадочны во многом процессы, лежащие в основе деления клетки, и прежде всего процессы, определяющие исключительные по своей согласованности и сложности движения хромосом и митохондрий (рис. 74 и 75) [506, 507], а также клеточных ядер, хлоропластов и других микрообъектов биологического происхождения [508, 509]. Нет сомнения в том, что эти движения, как и во всех других случаях, обусловлены действием сил, которые могут быть поверхностными или объемными (осмотические, силы набухания). Роль осмотических сил в жизненных процессах, как известно, исключительно велика возможно, что совместное действие тех и других сил определяет указанные движения. [c.119]

    Дан и автор данной статьи начали совместную работу в Калифорнийском университете над разрешением этих вопросов. Прямой путь к цели представлялся весьма простым. Для этого нужно было выделить в чистом виде и в достаточном количестве митотический аппарат из делящихся клеток и изучить его химический состав и строение. Другие части клетки — ядра, хромосомы, митохондрии — в свое время с успехом выделяли и изучали. Но в данном случае задача была более сложной. Митотический аппарат — структура временная. Он появляется в клетке лишь тогда, когда клетка делится, и в процессе деления все время изменяется. Он не лежит свободно в веществе клетки, а тесно связан с этим последним. И что хуже всего — он крайне неустойчив в своей живой [c.201]

    Интенсивные процессы синтеза в клетке. Деление Зг митохондрий и хлоропластов. Увеличение запасов энергии. Начинается образование веретена деления, [c.145]

    Рост протоплазмы. Клетка начинает свое существование вследствие деления эмбриональной материнской клетки, способной к делению. Благодаря росту протоплазмы она вырастает приблизительно до размеров материнской клетки. При этом все плазматические структуры, например, пропластиды, митохондрии, субструктуры (элементарные мембраны) и вещества (ДНК, РНК, белки, липиды и т. д.) количественно удваиваются, т. е. достигают первоначального их количества в материнской клетке. Рост протоплазмы состоит из хорошо известных процессов  [c.393]


    К оболочке вплотную прилегает цитоплазматическая мембрана. Она обладает избирательной проницаемостью, т. е. пропускает внутрь клетки и отводит из нее определенные вещества. Благодаря такой способности мембрана играет роль органеллы, концентрирующей питательные вещества внутри клетки и способствующей выведению наружу продуктов жизнедеятельности. Внутри клетки всегда наблюдается повышенное по сравнению о окружающей средой осмотическое давление. Цитоплазматическая мембрана обеспечивает его постоянство. Кроме того, она является местом локализации ряда ферментных систем, в частности окислительно-восстановительных ферментов, связанных с получением энергии (у эукариотов они находятся в митохондриях). В отличие от клеток эукариотов в прокариотической клетке отсутствует деление ее на отсеки. Клетки прокариотов не имеют ни комплекса Гольджи, ни митохондрий, не наблюдается у них и направленного движения цитоплазмы. Явления пиноцитоза и фагоцитоза прокариотам не свойственны. Из органелл только рибосомы аналогичны рибосомам эукариотов. [c.43]

    Митохондрии во многом похожи на свободноживущие прокариотические организмы например, они напоминают бактерий по форме и размеру, содержат ДНК, производят белок и размножаются делением. Разрушив эукариотические клетки и разделив их компоненты, можно показать, что митохондрии ответственны за дыхание и что ни в каких других частях клетки этот процесс не происходит. Без митохондрий клетки животных [c.30]

Рис. 4-18. Схематическое изображение, иллюстрирующее, как легко прийти к ошибочным выводам, изучая отдельные тонкие срезы. Так, например, в данном случае рассматриваются срезы клетки, в которой имеется лишь одна разветвленная митохондрия Между тем создастся впечатление, что большинство срезов содержит две или три отдельные митохондрии. Более того, может показаться, что на срезах 4 и 7 выявляемая митохондрия находится в процессе деления. Серийные срезы позволяют реконструировать реальную форму, существующую в действительности Рис. 4-18. Схематическое изображение, иллюстрирующее, как легко прийти к ошибочным выводам, изучая отдельные <a href="/info/104322">тонкие срезы</a>. Так, например, в данном случае рассматриваются срезы клетки, в которой имеется лишь одна разветвленная митохондрия Между тем создастся впечатление, что большинство срезов содержит две или три отдельные митохондрии. Более того, может показаться, что на срезах 4 и 7 выявляемая митохондрия находится в <a href="/info/1659980">процессе деления</a>. Серийные срезы позволяют реконструировать <a href="/info/767128">реальную форму</a>, существующую в действительности
    Биолог. Да, Его называют еще единой энергетической валютой, так как он используется во всех живых организмах и растениях. Видимо, это дань ставшей очень модной сейчас экономике,,. Интересно, что по многим свойствам митохондрии очень похожи на бактерии их характерные размеры составляют несколько десятых микрометра, митохощфии имеют собственную ДНК и могут делиться самостоятельно, независимо от деления самой клетки, но "подстраиваясь" под ее потребности в энергии. Поэтому плотность митохондрий в клетках организма соответствует средней интенсивности процессов метаболизма [Христолюбова, 1977, Лузиков, 1980 Кемп, Арме, 1988], [c.36]

    Митохондрии фигурируют во всех аэробных клетках животных и растений, за исключением некоторых примитивных бактерий, в которых функции митохондрий выполняет плазматическая мембрана. Число этих органоидов в клетке различно — от 20—24 в сперматозоидах до 500 ООО в клетке гигантской амебы haos haos. Число митохондрий характерно для клеток данного вида, по-видимому, прн митозе происходит деление митохондрий и их правильное расхождение в дочерние клетки. Во многих клетках митохондрии образуют непрерывную сеть — митохондриальный ретикулум. Форма, структура и размеры митохондрий также варьируют. Они всегда обладают системой внутренних мембран, именуемых кристами. На рис. 13.5 схематически изображена структура митохондрии кз печени крысы. Длина ее примерно [c.429]

    Все пластиды содержат множественные копии собственного геиома, и больщииство из них (если не все) способно размножаться внутри клетки делением (см. разд. 9.5.2). Единственный тип клеток, утративший пластиды,-это спермии некоторых высших растений такие растения (например, кукуруза) получают пластиды только от яйцеклетки, из которой они развились, и в этом случае пластиды, подобно митохондриям у животных, наследуются по материнской линии. [c.184]

    О происхождении митохондриальной и хлоропластной ДНК было высказано множество предположений. Одно из них состоит в том, что они представляют собой остатки хромосом древних бактерий, которые попали в цитоплазму клетки-хозяина и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Поскольку свыше 95% митохондриальных белков кодируется ядерной ДНК, причина существования митохондриальной и хлоропластной ДНК является одной из загадок генетики клетки. В процессе деления клетки-хозяина митохондрии и хлоропласты также делятся (рис. 27-24). До и во время деления митохондрий их ДНК реплицируются и дочерние мДНК переходят в дочерние митохондрии. [c.876]

    Митохондрии, встречающиеся во всех клетках, выполняют особенно ответственные функции, так как служат поставщиком энергии для клетки. Во время митоза митохондрии собираются около мембраны ядра, в стадии метафазы они окружают хромосомы (Д. Джинкс), после деления перемещаются к центру клетки. [c.161]

    Скорость замораживания и присутствие криофилактиков оказывает влияние на выживаемость костной ткани и на процессы дифференциации и деления клеток [733]. Охлаждение организма животных позволяет продлить состояние клинической смерти [734], что очень важно для успешной реанимации. Используя в качестве криопротекторов диметилсульфоксид и бычий альбумин из плазмы, удалась разработать методику хранения митохондрий из печени р-ысы в замороженных при температуре жидкого азота растворах < [735]. Митохондрии выполняют роль энергетических фабрик в клетке и представляют собой сложные биологические объекты. Осуществление длительной консервации митохондрий без нарушения их последующего функционирования является большим достижением. [c.268]

    Но теперь возникает вопрос ведь уже в молодой клетке присутствуют все органеллы, пусть даже частично в виде предшественников, так откуда ОНИ здесь берутся То, что ядро всегда возникает только из ядра, достаточно хорошо известно (мы уже рассказывали о ядерном делении). Но как обстоит дело с диктиосомами, митохондриями и хлоропластами Возникают ли они также всегда только из себе подобных или могут образовываться de novo (т. е. заново)  [c.260]

    Если эта гипотеза верна, то при клеточном делении каждой из обеих дочерних клеток полагается получить по одинаковому набору органелл. Тогда пропластиды и промитохондрии должны делиться синхронно с ядром и достаться дочерним клеткам поровну. Как правило, так всегда и происходит (хотя неизвестно, каким образом). Однако известны случаи, когда, например, пропластиды делятся медленнее, чем ядро. При последовательных клеточных делениях в клетках с каждым разом остается все меньше пропластид они изреживаются , пока, наконец, не останется одна-единственная пропластида. Теперь при очередном клеточном делении эту единственную пропластиду получит одна из двух дочерних клеток, вторая же останется ни с чем. Всю свою жизнь она будет лишена хлоропластов и поэтому будет бесцветной. (Отсюда следует, что клетки не способны перестраивать в хлоропласты другие клеточные органеллы — это относится и к митохондриям.) Таким путем могут возникать пестрые листья, украшающие некоторые из наших комнатных растений. [c.260]

    Этофумезат (2-этокси-2,3-дигидро-3,3-диметилбензофуран-5-ил-метансульфонат, растворимость в воде при 25°С — ПО мг/л) повреждает растущие за счет клеточного деления ткани из-за сильного некроза базальная часть стеблей овса и овсюга утоньшается и растения надламываются. У некоторых однолетних, например росички, вызывает подавление роста. Влияет этофумезат и на процесс окислительного фосфорилирования усиливает перенос ионов Н+ через внутреннюю мембрану митохондрий, вследствие чего высвобождающаяся при окислительных процессах энергия не фиксируется в высокоэнергетических связях АТФ. [c.37]

    Подобно трифлуралину, нитралин проникает в растения преимущественно через корни. Он тормозит in vitro потребление кислорода и окислительное фосфорилирование в изолированных митохондриях кукурузы, проса и сои [1017] и подавляет процесс деления клеток, особенно в меристематических тканях кончиков корней у проростков растений. [c.484]

    Закончившая рост взрослая типичная живая растительная клетка имеет следующие части оболочку, протопласт и вакуоль с клеточным соком. Протопласт — живое содержимое клетки. Оболочка и клеточный сок — продукты жизнедеятельности протопласта. Протопласт состоит из протоплазмы (цитоплазмы) и включенных в нее органоидов ядра, пластид, митохондрий (хондриозом). В молодой клетке, образовавшейся в результате деления, цитоплазма заполняет ее сплошь или почти сплошь. Вакуолизация, т. е. появление полостей, заполненных клеточным соком, происходит постепенно, по мере роста клетки. Во взрослой клетке цитоплазма тонким слоем выстилает внутреннюю поверхность оболочки образовавшаяся внутри клетки полость наполнена клеточным соком. [c.13]

    Обмен фосфора в дезоксирибонуклеиновой кислоте, трудно обнаруживаемый в покоящихся клетках, значительно ускоряется при их делении. Он, например, почти незаметен в печени взрослых крыс, но идет сравнительно быстро при ее росте после частичного ее удаления. В клетках ростков бобов значительный обмен фосфора дезоксирибонуклеиновой кислоты наблюдался в первых стадиях митогенеза [1459]. Эритроциты не делятся иих дезоксирибонуклеиновая кислота не усваивает фосфора из неорганических фосфатов, но усвоение легко идет в процессе образования эритроцитов в костном мозге, после чего Р прочно ими удерживается [1461 ]. На этом основан описываемый ниже способ получения меченых эритроцитов, применяемых для изучения кровообращения. С другой стороны, 1шблюдалось включение O из меченого глицина и аденина в дезоксирибонуклеиновую кислоту неделящихся клеток спермы морского ежа [1463]. При помощи Р найдено, что в микрозомы клеток дезоксирибонуклеиновая кислота доставляется из ядер, тогда как в митохондриях она синтезируется самостоятельно [1464]. [c.501]

    У аэробных и анаэробных бактерий мы наблюдали прямой контакт мезосом с фибриллами ДНК — факт важный для оценки функции этих структур. В обоих случаях в мезосомах был обнаружен материал клеточной стенки, наличие которого объясняет участие мезосом в образовании поперечных перегородок при делении клетки. Наконец, у аэробных и анаэробных бактерий мы не наблюдали стимулирующего влияния аэробиоза или угнетающего влияния анаэробиоза на развитие мезосом (Кац, Торджян, 1968 Кац, Харатьян, 1969), как это наблюдается у дрожжей, имеющих митохондрии (Мейсель и др., 1967, 1968). Последнее обстоятельство делает маловфоятным существование мезосом, специализированных, например, только в отнощении дыхания (Бирюзова, [c.32]

    В эукариотической клетке, как мы видели, имеется ядро, отделенное от окружающей его цитоплазмы ядерной мембраной. Ядро содержит хромосомы, несущие гены. Хромосомы состоят из ДНК и белка. При делении хромосомы распределяются между дочерними клетками в результате сложного процесса митоза и мейоза. Цитоплазма эукариотической клетки содержит в свою очередь различные субклеточные органеллы. Прокариотические клетки устроены проще. В них нет четкой гранииы между ядром и цитоплазмой, нет ядерной мембраны. ДНК в этих клетках не связана с белком и не образует структур, похожих на хромосомы эукариотов. Поэтому у прокариотов не обнаруживается процессов митоза и мейоза. Наконец, в этих клетках нет субклеточных органелл, которые напоминали бы митохондрии или иентриоли клеток эукариотов. Вряд ли можно сомневаться, что более просто устроенные прокариоты являются эволюционными предшественниками более сожных эукариотов. Лишь немногие из происшедших позднее событий биологической эволюции смогли оказать большее влияние на дальнейший ход эволюции органического мира, чем переход от прокариотической жизни к жизни эукариотической, который совершился в докембрии. Ведь именно этот переход сделал в конце концов возможным возникновение многоклеточных организмов, состоящих из высокодифференцированных клеток, обладающих специализированными функциями, и подготовил таким образом путь для появления макроскопических организмов. [c.47]

    Это предположение было основано на данных о том, что увеличение количества митохондрий в клетке происходит путем их удлинения и деления аналогично тому, как происходит размножение бактерий, которые очень напоминают митохондрии по размерам и форме (но не по внутренней структуре). Более того, были выявлены изменения структуры и функции митохондрий, наследование которых не подчинялось менделевским правилам расщепления, характерным для ядерных генов. Было показано, что генетические факторы, ответственные за эти изменения, находятся в самих митохондриях. Выяснилось также, что изолированные митохондрии способны включать аминокислоты в белки, а впоследствии было установлено, что они содержат такие компоненты белоксинтезирующего аппарата, как рибосомы, тРНК и аминоацил-тРНК — синтетазы. И наконец, в 1963 г. было обнаружено, что митохондрии содержат свою собственную [c.510]

    Митохондрии и хлоропласты никогда не возникают de novo, они всегда образуются путем деления уже сушествующих органелл. Как показывают наблюдения над живыми клетками, митохондрии не только делятся, но могут и сливаться друг с другом. Однако в среднем каждая органелла должна удвоить свою массу и затем разделиться пополам один раз за одну клеточную генерацию. Электронные микрофотографии дают основание полагать, что деление митохондрий начинается с образования кольцевой бороздки на внутренней мембране, подобно тому как это происходит при делении многих бактериальных клеток (рис. 7-65 и 7-66) таким образом, деление митохондрий - это, по-видимому, контролируемый процесс, а не случайное расшепление надвое. [c.486]


Смотреть страницы где упоминается термин Митохондрия деление: [c.162]    [c.247]    [c.37]    [c.206]    [c.482]    [c.24]    [c.28]    [c.40]    [c.194]    [c.380]    [c.132]    [c.8]    [c.125]    [c.195]   
Биохимия Том 3 (1980) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Делении



© 2024 chem21.info Реклама на сайте