Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Светофильтры фильтры

    Для микрохимической работы требуется такой осветитель для микроскопа, который можно быстро регулировать по высоте, для того чтобы обеспечить быструю смену проходящего и отраженного света. Осветитель должен обеспечить фокусировку небольшого пятна света высокой интенсивности а объекте исследования и иметь приспособление для помещения матового стекла или светофильтра (фильтры дневного света) по одному или по два одновременно. Кроме того, осветитель должен быть легким, небольщим и не должен сильно нагреваться. Очевидно, что вышеперечисленным требованиям удовлетворяет низковольтная лампа, мощностью в несколько ватт, смонтированная с конденсорной линзой в телескопической трубке. Трубку можно смонтировать с хорошей балансировкой в шаровом шарнирном универсальном соединении, которое в свою очередь можно регулировать по высоте вдоль вертикального стержня. [c.30]


    Приборы и принадлежности калориметр-нефелометр ФЭКН-57, набор светофильтров, фильтр Шотта № 2, колба плоскодонная емкостью 100 см  [c.154]

    Наблюдение под микроскопом. Для работы микроскоп помещают на стол против окна или против специальной осветительной лампы (см. рис. 32). На микроскоп не должен падать прямой солнечный свет. При работах с осветительной лампой помещают под конденсор голубой светофильтр ( фильтр дневного света ), благодаря чему состав света приближается к составу дневного света. [c.32]

    Монохроматический свет выделяется стеклянным склеенным светофильтром, который помещается за тепловым фильтром. В комплекте имеются светофильтры, характеристики которых приведены в табл 4. [c.41]

    Для поглощения ультрафиолетовых лучей, отраженных на объекте съемки и вызывающих на снимке общин синий тон, перед объективом фотоаппарата ставили светофильтр. Проверка различных жидкостных и твердых фильтров показала, что подходящим и удобным в обращении фильтром, задерживающим ультрафиолетовые лучи, оказалось свинцовое стекло. Цветные материалы обрабатывали по обычным рецептурам и режимам практической фотографии. [c.488]

    Фильтры и монохроматоры. Светофильтры, используемые для выделения необходимой спектральной области источника света, так называемые первичные фильтры, не должны пропускать свет в области, где измеряется люминесценция, и, наоборот, пропускать как можно больше света в области поглощения объекта. Длинноволновая граница пропускания светофильтров должна быть несколько смещена в коротковолновую сторону по сравнению с самым длинноволновым максимумом поглощения. Фильтры, использующиеся для выделения флуоресценции, так называемые вторичные фильтры, должны отсекать весь рассеянный возбуждающий свет и пропускать весь свет флуоресценции. В качестве первичных и вторичных фильтров используются стеклянные фильтры из цветного стекла. В качестве вторичных фильтров могут использоваться клееные стеклянные фильтры и интерференционные-фильтры. Первые состоят из двух стеклянных пластинок и заключенного между ними слоя желатины, окрашенной органическими красителями. Под действием интенсивного облучения эти фильтры со временем портятся. Интерференционный фильтр представляет собой стеклянную пластинку, на которую нанесены две (или более) полупрозрачные металлические пленки, разделенные слоем прозрачного вещества. Для защиты металлического слоя на него наклеивается еще одна стеклянная пластинка. Расстояние между металлическими пленками определяет длину волны света, проходящего сквозь фильтр. Свет, половина длины волны которого равна расстоянию между пленками, пройдет через фильтр, а свет с любой другой длиной волны отразится. Интерференционные фильтры также разрушаются от интенсивного облучения. [c.65]


    Стеклянные светофильтры весьма удобны в работе. Для выделения узких спектральных областей часто могут быть использованы комбинированные светофильтры, состоящие из стандартных стеклянных фильтров. Некоторые такие комбинации для линий [c.142]

    Для ультрафиолетовой области спектра имеющиеся стеклянные и желатиновые светофильтры не обеспечивают получения узких спектральных областей высокой интенсивности. Здесь достаточно широкое применение получили фильтры, представляющие собой, как правило, растворы тех или иных селективно поглощающих веществ или газообразные вещества. Состав светофильтров для выделения линий ртутного спектра приведен в табл. 10. [c.143]

    Кроме абсорбционных светофильтров для видимой и ультрафиолетовой части существуют также фильтры, позволяющие отделить видимую часть спектра от инфракрасной. Ближайшая инфракрасная область хорошо отсекается от видимой при помощи растворов хлорида меди (П), более далекая — простым водяным фильтром (рис. 52). [c.143]

    Применение светофильтров не ограничивается только уменьшением интенсивности рассеянного света. Очень часто нежелательно поглощение образцом короткого ультрафиолетового излучения, приводящего к диссоциации связей в молекулах. Кроме того, в сложных системах иногда жестким требованием является поглощение света только одним из компонентов, чтобы избежать фотолиза добавок или растворителя. Все эти требования выполняются при определенном подборе светофильтров. При больщих квантовых выходах фотопроцессов и хорошей светоотдачи импульсных ламп возможно применение узкополосных фильтров, например светофильтров, для выделения ртутных линий (313, 365, 405 нм и т. д.) или комбинации фильтров УФС и фильтров БС, которые отрезают определенную часть ультрафиолетовой области. Вместо фильтров БС могут быть использованы фильтры ЖС-З п ЖС-20, имеющие провал в области 313 и 300 нм соответственно. [c.184]

    Импульсное облучение кюветы проводится фильтрованным светом. Могут быть использованы следующие светофильтры для нафталина УФС-1 или УФС-2, а также комбинация фильтров УФС-2 и ЖС-З для фенантрена те же фильтры, что и для нафталина, или УФС-6 для антрацена УФС-1, УФС-2, УФС-6 или узкополосный фильтр для выделения ртутной линии 365 нм. Энергия вспышки выбирается такой, чтобы в максимуме спектра поглощения оптическая плотность не превышала 0,3. После получения кинетических кривых проводят их обработку (см. 5) и строят зависимость оптической плотности от длины волны, т. е. спектр триплет — триплетного поглощения. [c.191]

    Селективные фильтры используют либо для выделения узкой спектральной области (узкополосные), либо для отделения широкой области спектра. Лучшие узкополосные фильтры имеют полосу пропускания 0,1 нм, однако количество пропускаемого ими излучения невелико, поэтому основное назначение светофильтров при спектральных исследованиях — грубая монохроматизация или неселективное ослабление излучения. Наибольшее применение в практике спектрального анализа получили абсорбционные фильтры, принцип действия которых основан на избирательном поглощении излучения веществом фильтра. [c.8]

    При подборе светофильтра нужно учитывать не только поглотительную способность исследуемого вещества, но и спектральные характеристики светофильтра и фотоэлемента. Практически это сводится к выбору светофильтра, при котором исследуемый раствор, при прочих равных условиях, показывает наибольшую оптическую плотность. Этот фильтр берут для работы и, варьируя концентрацию и толщину слоя, добиваются значений оптической плотности в пределах 0,3—0,8. [c.177]

    После промывки световую камеру заполняют дистиллированной водой до метки на ее внутренней стенке. Измерительную кювету промывают изнутри и снаружи дистиллированной водой. Через стеклянный фильтр в нее фильтруют дистиллированную воду, дважды ополаскивают фильтратом, а затем заполняют им кювету на 3/4 высоты. Устанавливают кювету в световую камеру таким образом, чтобы дно кюветы вошло в углубление центратора без перекоса. Вводят в ход лучей светофильтр № 5 (зеленый), рассеиватель № 2 и производят измерение, уравнивая интенсивности полей зрения. После этого опорожняют кювету, фильтруют в нее [c.162]

    Методика определения. Навеску алюминиевого сплава 0,1 г обрабатывают без подогревания 5 мл хлористоводородной кислоты (1 1) в стакане емкостью 100—150 мл. При этом алюминий, магний и другие элементы переходят в раствор, весь же висмут, а также большая часть свинца и меди остаются в остатке. По окончании растворения немедленно прибавляют 5 мл дистиллированной воды и нерастворившийся остаток отфильтровывают на маленьком бумажном фильтре, промывая его 2 раза небольшими порциями горячей воды. Отфильтровывание и промывание остатка следует проводить возможно быстро, иначе для висмута получаются заниженные результаты. Промытый осадок растворяют па фильтре в 5—10 мл горячей азотной кислоты (1 1), собирая жидкость в мерную колбу емкостью 50 мл. Фильтр промывают небольшими порциями азотной кислоты (1 10), а затем водой. Промывные воды собирают в ту же колбу. В колбу вводят 10 aia насыщенного водного раствора тиомочевины и раствор разбавляют водой до 50 мл. Измеряют оптическую плотность раствора на фотоэлектроколориметре с синим светофильтром. [c.377]


    Выпускается хороший набор цветных оптических стекол, к которому прилагаются их спектры пропускания. Пользуясь этими данными, можно легко подобрать нужный светофильтр и определить его толщину. Очень удобны интерференционные светофильтры, которые имеют узкие полосы пропускания. Удается изготовить фильтры с полосой пропускания в несколько ангстрем. Их можно изготовить для нужного участка видимой, ультрафиолетовой и ближней инфракрасной областей спектра. [c.150]

    По принципу действия различают абсорбционные, дисперсионные и интерференционные светофильтры. Наибольшее применение при исследовании фотохимических реакций находят абсорбционные светофильтры. Абсорбционные светофильтры изготовляются из сред, поглощающих свет окрашенных стекол и желатиновых пленок, химических фильтров (газовых, жидких). Существует большое количество абсорбционных стеклянных светофильтров. Отдельные типы стекол обозначаются соответственно спектральной области пропускания ультрафиолетовые — УФС, фиолетовые —ФС, синие— СС, сине-зеленые — СЭС, зеленые — ЗС, желто-зеленые — [c.141]

    Для иллюстрации характера сенсибилизированной изомериза-ии удобно рассмотреть ( с-гранс-изомеризацию бутенов в при-/тствии сенсибилизатора — бензола. Реакцию можно вести при змнатной температуре, облучая ячейку с газообразными композитами (парциальное давление бензола в ячейке ниже давления О насыщенного пара) через светофильтр ртутной лампой. В ра-эте [14] использовали фильтр, не пропускавший свет с длиной злны меньше 200 нм при этом единственным продуктом изоме-1зации цис-бутеяа-2 был транс-бутен-2. [c.59]

    Навеску анализируемого продукта (0,05—2,0 г) окисляют в калориметрической самоуплотняющейся бомбе, в которую предварительно для поглощения продуктов разложения вносят 20 мл дистиллированной воды. Полученный после разложения пробы раствор количественно переносят в стакан, упаривают и фильтруют в мерную колбу емкостью 50 мл. Затем последовательно добавляют 5 мл 10%-ного раствора тиосульфата натрия, 0,5 мл 107о-ного раствора фторида аммония,. 10 мл буферного раствора с рН = 5 и 0,5 мл 20%-ного раствора пирокатехина и доливают до метки дистиллированную воду. Определяют оптическую плотность полученного раствора на фотоэлектроколориметре ФЭК-М с желтым светофильтром в кювете толщина слоя 50 мм. Чувствительность метода 10- %. Сходимость определений 10% отн. Продолжительность анализа около 1 ч вместо 24 ч, затрачиваемых при анализе по методу ГОСТ 10364—63. Результаты анализа полностью согласуются с данными, полученными по методу ГОСТ. [c.186]

    На рис. 164 приведена принципиальная схема установки для измерения содержания нитробензола в анилине. Смесь паров анилина и воды, отфильтрованная от шлама на фильтре 1, поступает в конденсатор 2 и затем в разделитель фаз 3. Неконденси-рующиеся газы удаляются в атмосферу, конденсат через холодильник 4 [юступает в сепаратор 5, где анилин отделяется от воды. Уровешз анилина в сепараторе автоматически регулируется прибором 6. Анилиновь[й слой поступает через подогреватель 7 в кювету фотоколориметра 13, которая вмонтирована в прибор, со- стоящи из фотоэлементов 5, линз 11, светофильтров 10, регулирующей диафрагмы 9 и осветителя 12. Фотоколориметрический прибор сигнализирует о повьппении содержания невосстановленного [c.283]

    Качество изображения может быть улучшено за счет спектрального изменения светового потока в микроскопе, достигаемого применением светофильтров. Контрастные фильтры позволяют повышать контрастность окрашенных объектов кристаллы, имеющие одинаковую с фильтром окраску, будут иметь светлый оттенок, а кристаллы, окрашенные в цвет, дополнительный к цвету фильтра, — в темный тон. При использовании контрастных светофильтров целесообразно применение панхроматических фотоматериалов. Для уменьшения силы светового потока (яркости изображения) в соответствии с чувствительностью фотоматериала применяют различные компенсационные фильтры светоослабляющие, фильтры дневного света, теплозащитные и специальные желто-зеленые фильтры. Все эти фильтры обладают небольшим собственным поглощением света, поэтому при цветной микрофотографии их следует применять с учетом этого обстоятельства. Для выделения из видимой части спектра нужного излучения применяют избирательные фильтры — синий, зелеьый, желтый, оранжевый и красный. Эти фильтры используют в специальной флюоресцентной микроскопии. Зеленые фильтры, устраняющие остаточную аберрацию ахроматических объективов, называются корригирующими фильтрами и применяются для повышения контрастности изображения. Синие фильтры повышают разрешающую способность микроскопов. [c.117]

    После окончания разделения фаз нижний слой отбрасывают, а окрашенный экстракт фильтруют через слой стеклянной ваты. Измеряют оптическую плотность экстрактов на спектрофотоколориметре ФЭК с зеленым светофильтром в кюветах с толщиной слоя 1 см относительно того же органического растворителя и строят калибровочный график. [c.381]


Смотреть страницы где упоминается термин Светофильтры фильтры : [c.34]    [c.35]    [c.36]    [c.192]    [c.192]    [c.192]    [c.299]    [c.141]    [c.143]    [c.184]    [c.98]    [c.98]    [c.35]    [c.36]    [c.38]    [c.52]    [c.274]    [c.143]    [c.184]   
Техника и практика спектроскопии (1976) -- [ c.225 ]

Техника и практика спектроскопии (1972) -- [ c.221 , c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Светофильтры



© 2025 chem21.info Реклама на сайте