Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран экстракция соединений отделение

    Фосфаты и другие анионы, образующие с ТЬ устойчивые комплексы или нерастворимые соединения, препятствуют экстракции, и (VI) полностью экстрагируется вместе с ТЬ 2г и Ре (III) экстрагируются соответственно в количествах 25 и 10%. Уран может быть отделен от ТЬ экстракцией этиловым эфиром из ацетатного буферного раствора, насыщенного А1 (ЫОз)з он переходит в органическую фазу, а ТЬ остается в водной [5]. 2г лучше отделять до экстракции фторидным осаждением тория. [c.378]


    Большинство комплексов уранил-иона с неорганическими соединениями бесцветны и хорошо растворимы в воде их суш ествование должно учитываться как при отделении урана (экстракцией и др.), так и при его определении различными методами (спектрофотометрическими, потенциометрическими и др.). [c.23]

    Th(UXi). Этот изотоп тория накапливается во всех соединениях урана в результате а-распада в соответствии со своим периодом полураспада, равным 24,1 дня. Из раствора азотнокислого уранила UX отделяется экстракцией урана диэтиловым эфиром или ТБФ. Отделение от урана может быть проведено также осаждением UXi на гидроокиси железа или осаждением добавленного в качестве носителя церия щавелевой кислотой. Вместе с UXi выделяется UY — продукт а-распада [c.325]

    Имеется большое число колориметрических методов определения урана. Более подробно будут описаны 1) Определение с перекисью водорода в щелочной среде. Этот метод очень мало чувствителен, но селективен и особенно удобен в тех случаях, когда уран находится в карбонатном растворе, например после его отделения экстракцией комплексного соединения урана с сульфатами аминов или роданида урана и обратного перевода в водную фазу карбонатом. [c.1073]

    Задачей наших последних работ явилось определение примесей РЗЭ, в частности 0(1, Зш, Еп, в металлическом уране и в окиси европия. Европий и уран, будучи хорошими активаторами люминесценции, чаще всего бывают также акцепторами энергии. Поэтому при разработке люминесцентного метода определения малых количеств РЗЭ в соединениях этих элементов необходимо проводить предварительное концентрирование РЗЭ, т. е. отделение элемента-основы (например, методами экстракции или хроматографии). Как показал опыт, концентрирование примесей РЗЭ лучше проводить хроматографическим методом. Полученный экстракт или элюат используют затем для приготовления кристаллофосфоров. [c.26]

    Интересный метод отделения тяжелых металлов от магния заключается в экстракции их ацетилацетонатов четыреххлористым углеродом . Алюминий, железо (1П), титан, марганец, медь, ванадий, уран, так же как и некоторые другие металлы, дают с ацетилацетоном в приблизительно нейтральной (но не слишком кислой) среде соединения типа [c.529]

    Описанный метод применяют для определения марганца в сталях, чугунах, рудах [22, 39, 50, 186, 407, 408, 633, 669, 1018, 1085, 1101, 1179, 1506], в горных породах [754], различных сплавах [137, 1057, 1487], мартеновских шлаках [136, 207, 686, 1101], соединениях тория [245], никеле [145, 364], алюлшнии [614], биологических материалах [ИЗО], воде [542, 1018], почвах [1204] и др. При определении марганца в едких щелочах предварительно экстрагируют диэтилдитиокарбаминатный комплекс Мп(П), а затем разрушают его и окисляют Мп(П) до Mn(VII) персульфатом аммония. Чувствительность метода 1-10 % [379]. Простой метод определения марганца в серебре высокой чистоты состоит в осаждении серебра в виде Ag l и определении Мп в фильтрате с чувствительностью 10 —10 % и относительной ошибкой 2—7% [1079]. Определение марганца в уране основано на отделении последнего экстракцией смесью ТБФ и G I4 и измерении оптической плотности водного раствора при Ъ2Ъ нм после окисления Мп(П)до Mn(VII). Метод позволяет определять до 2 мкг Мп/з при навеске урана 2 г [1077]. Определение больших количеств марганца производят дифференциальным фотометрическим методом [50]. [c.55]


    Из растворов нитратов метилизобутилкетон экстрагирует уран в виде молекулярного соединения с нитратом уранила. При достаточном содержании азотной кислоты уран в органическую фазу извлекается в виде оксониевого соединения [UOg (МОз)з]Н- ОС(СНз)(С4Н ). Избирательность экстракционного отделения приблизительно такая же, как и с применением трибутилфосфата. Указывается, что в случае применения в качестве высаливателя нитрата аммония имеет место более полное отделение урана от продуктов деления, чем при применении других высаливателей. Большая селективность отделения имеет место в отсутствие свободной азотной кислоты. Увеличение кислотности экстрагируемого раствора от дефицита в 0,1УИ по HNO3 (за счет частичной нейтрализации раствора нитрата алюминия, применяемого в качестве высаливателя) до ее концентрации в растворе, равной 0,1 AI, повышает коэффициент распределения осколков в 42 раза 121]. Вследствие высокой экстракционной способности метилизобутилкетона полное извлечение урана достигается в соответствующих условиях при однократной экстракции равным объемом метилизобутилкетона. [c.299]

    Кроме три-(н.октил)-фосфиноксида, для экстракционногс отделения урана были применены многие другие фосфорорганическне соединения [396, 642], содержащие фосфиноксндную группу. Моррисон и Фрейзер [759] указывают, что уран может быть количественно экстрагирован из растворов 0,1 М по нитрат-иону, при pH около 1,0 с помощью 0,1 Л1 раствора в керосине или четыреххлористом углероде три-(н.октил)-, три-(н.децил)-, три-(н.додецил)- или три-(3,5,5-триметилгексил)-фосфиноксида. Фосфаты и сульфаты, если их концентрация не превышает 0,5 М, на полноту экстракционного отделения не оказывают влияния. Уран может быть количественно отделен за одну экстракцию 0,05 М раствором три-(н.децил)-фосфиноксида в керосине из растворов хлоридов с кислотностью от 0,05 до 4Л . [c.303]

    Оксиматы. Д1Шетилглиоксим остается наиболее распространенным реактивом для отделения и фотометрического определения никеля с помощью экстрагирования. Экстракция диметилглиок-симата никеля и фотометрирование полученного экстракта применены для определения никеля в кобальте и его солях [202], в черных и цветных металлах [203], в металлическом уране [204, 205], в свинцовых и свинцово-оловянных бронзах [206]. Описаны методики, по которьш фотометрическое определение никеля заканчивают после реэкстракции и окисления диметилглиоксима-та никеля иодом. Этот принцип использован при определении никеля в металлическом бериллии, соединениях бериллия, цирконии и цирколое [207] и в растворах для получения электролитического цинка (комплекс окисляют бромом) [208]. Предложены и другие варианты фотометрирования никеля 1209 210]. [c.244]

    Кроме этих давно известных методов, сейчас все шире входят в практику фотоколориметрические методы, основанные на применении органических реактивов, в частности арсеназо. Фотометрическое определение урана (IV) в 4-н. соляной кислоте позволяет определять 0,002% урана в рудах чувствительность метода 0,04 мкг/мл-, определению урана мешает только торий [1008]. В. И. Кузнецов и И. <В. Никольская [1009] восстанавливают уран (VI) до урана (IV) йодидом калия и фотометрируют сине-фиолетовое соединение с арсеназо при pH = 1,5- -1,8. Ион уранила также дает реакцию с арсеназо после отделения от примесей экстракцией бутиловым спиртом или ТБФ из растворов, насыщенных комплексоном, чувствительность реакции повышается до 0,002 мкг1мл [1010, 1011]. [c.384]

    Вот несколько примеров выделения радиоизотопов при помощи экстракции внутрикомплексных соединений. Уран-233 выделяли из облученного нейтронами тория, экстрагируя диэтилдитиокарбаминат уранила ыешлизобутгткетовом [871]. В другой работе очищали от примесей экстракцией 10%-ным раствором оксихинолина в метилизобутилкетоне из слабощелочного раствора, содержащего ЭДТА [678]. Протактиний-233 был отделен от облученного тория бензольным раствором бензоилфенилгидроксиламина [872]. При выделении радиоизотопа Np использовали экстракцию 1-Ш1трозо-2-нафтолата пятивалентного нептуния [806]. Изотоп Zr без носителя отделяли от облученного дейтронами иттрия путем экстракции его из 1 iV соляной кислоты хлороформом в виде купфероната [873]. [c.267]

    Каждый органический реагент образует экстрагируемые внутрикомплексные соединения только с определенной группой металлов. В общем можно ожидать [562, 7931, что органические реагенты, которые имеютОН-груп-пу (например, Р-дикетоны, трополоны и др.), будут особенно хорошо реагировать с металлами, которые образуют устойчивые гидроксокомплексы [например, с цирконием, гафнием, ураном( У), плутонием(1У) и др.1 реагенты с 5Н-группой (дитизон и его производные, диэтилдитио-карбаматы и т. п.) будут реагировать преимущественно с металлами, которые образуют устойчивые и нерастворимые сульфиды (ртуть, серебро, медь и др.). Поэтому очевидно, что металлы, которые образуют экстрагируемые внутрикомплексные соединения, могут быть отделены от любого избытка других металлов, дающих неэкстра-гируемые соединения, или от металлов, которые вообще не взаимодействуют с реагентом. Так, например, металлы, образующие экстрагируемые дитизонаты — ртуть, серебро, медь, цинк, кадмий и др., — легко можно отделять от любых количеств металлов, которые не экстрагируются растворами дитизона [например, от алюминия, хрома(У1), молибдена(У1), урана(У1), редкоземельных элементов]. После отделения всех металлов, образующих дитизонаты, оставшиеся металлы можно экстрагировать, используя другой органический реагент. Например, многие элементы, мешающие фотометрическому определению алюминия в виде его 8-оксихинолината, могут быть отделены предварительной экстракцией в виде дитизонатов, диэтилдитиокарбаматов, 2-метил-8-оксихинолинатов и т. д. (см. главу 5). [c.62]


    Для повышения селективности экстракционного отделения урана с помощью ТБФ и других фосфорорганических соединений большое значение имеет применение различных комплексообразующих веществ, в особенности этилендиаминтетрауксусной кислоты, кото-)ая образует непрочные комплексные соединения с ураном [148]. Лроведение экстракции U в присутствии комплексона III позволяет отделить его практически ото всех элементов [1]. [c.184]

    Особенно успешно применяют газовую хроматографию для определения следов металлов после экстракции их трифторацетилацетоном. Применение высокочувствительных детекторов, таких, как ПФД, ЭЗД и масс-спек-трометр, позволяет проводить надежное определение пикограммовых количеств бериллия,, хрома и алюминия. Особенно плодотворным оказалось применение для этой цели ЭЗД, обладающего феноменальной чувствительностью к галогенированным соединениям. Ультрамалые количества Вс (Ю- —10- г) в виде Ве (ТФА)2 определяли экстракционно-хроматографическим методом в различных биологических средах [130, 155, 156, 173], в атмосфере и промышленном воздухе [142, 153, 154], в образцах лунной пыли и метеоритах [157]. Применение ЭЗД позволяет с неменьшей чувствительностью определять содержание хрома в плазме крови, физиологических сыворотках, моче и других биосредах [J50, 151, 158. 174, 175]. Разработан газохроматографический метод определения следов А] в уране [152], чувствительность которого в 500 раз выше чувствительности спектрального анализа. Соколов и др. [148] обнаружили в навеске 50 мкг полиэтилена 2-10- % А1, галогеналкильные производные которого являются одним из главных катали.заторов полимеризации этилена. Алюминий, растворенный в морской и пресной воде, можно количественно экстрагировать 0,1 М раствором ТФА в толуоле, а затем определить с помощью ЭЗД после отделения комплекса от растворителя при 118°С на колонке, содержащей две жидкие фазы — силикон и карбовакс 20 М [176]. [c.164]

    Не вступают в реакцию с ДДК торий, цирконий, тятан а др. Последним обстоятельством мы воспользовались для отделения лиркония от урана и ниобия, образующих комплексные соединения с ДДК. Экстракция ДДК-комплекса уранила осуществлялась хлороформом значение pH раствора регулировали ацетат-.ной буферной смесью количество урана, перешедшее в водную фазу, определ5ети колориметрическим перекисным методом. Содержание урана во всех опытах, приведенных в табл. 1, составляло 2,5 мг. [c.96]


Смотреть страницы где упоминается термин Уран экстракция соединений отделение: [c.487]    [c.308]    [c.83]    [c.303]    [c.116]   
Экстракция внутрикомплексных соединений (1968) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Уранила соединения



© 2025 chem21.info Реклама на сайте