Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий концентрирование примесе

    Флокуляция — как правило, процесс необратимый здесь невозможно путем уменьшения содержания в растворе реагента, как в случае электролитной коагуляции (см. ниже), добиться пептизации (дезагрегации) осадка. Благодаря этим особенностям, а также высокой эффективности (часто добавка флокулянта в количестве меньше 0,01 % от массы твердой фазы вызывает существенное снижение устойчивости) и относительной дешевизне, флокулянты широко используют для ускорения седиментации, концентрирования и обезвоживания промышленных суспензий (например, при получении алюминия из бокситов, концентрировании медных, свинцовых, никелевых руд после флотации), очистки природных и сточных вод от дисперсных примесей, улучшения фильтрационных характеристик осадка, структуры почв и их механических свойств (при строительстве аэродромов, укреплении стен буровых скважин и др.). [c.378]


    Применяют для ЭФО цинка в меди [560, 593], железных рудах и концентратах [114], кобальта в сплавах железа, никеля, алюминия, магния [222], цинка в теллуре [756], сурьмы [503], олова и сурьмы в рудах [504], концентрирования примесей при анализе рения, солях, воде [640, 713, 754], индикатор в комплексонометрии [692].  [c.168]

    Раствор фосфорной кислоты, полученный после отделения фосфогипса фильтрацией, загрязнен перешедшими в раствор примесями фосфата кремнеземом, сульфатами и фосфатами железа и алюминия и т. п. Оптимальные условия экстракции определяются стремлением получить возможно более высокую концентрацию кислоты, крупные, хорошо фильтрующиеся кристаллы фосфогипса и ускорить процесс экстракции. Скорость растворения фосфата лимитируется скоростью диффузии ионов водорода к поверхности частиц фосфата или ионов кальция из пограничного слоя в объем раствора. При высоких концентрациях возрастает вязкость растворов фосфорной кислоты, что замедляет скорость диффузии и снижает скорость растворения. Крупные кристаллы гипса получаются при 70—80°С и невысокой концентрации серной кислоты. Для получения более концентрированной фосфорной кислоты и ускорения процесса применяют 75%-ную серную кислоту и более высокую температуру в начале экстракции. Скорость экстракции [c.150]

    Графитовый порошок высокой чистоты класса ОСЧ-7-4 с размером частиц более 0,09 мм содержит по ТУ 01-59—69 не более Ы0" % железа, алюминия, магния, кальция, не более 3-10 % кремния зольность Ы0- %. Содержание титана, никеля, хрома, кобальта и других элементов не более Ы0 %- Этот порошок используется для приготовления эталонов, в качестве коллектора (адсорбента) при концентрировании примесей химическими методами. Порошок выпускается в расфасовке по 300 г в графитовых тиглях. Расфасовка производится до очистки порошка. [c.59]

    Весьма эффективно применение в качестве коллектора окиси алюминия, которая одновременно служит катализатором окисления, спектрографическим буфером и носителем. Навеску нефтепродукта смешивают с 2 г окиси алюминия и при периодическом перемешивании смесь осторожно нагревают на воздушной бане до прекращения вспенивания, затем нагрев усиливают и выдерживают до прекращения дымления образца. Остаток прокаливают в муфельной печи при 600 °С в течение 2 ч. Для равномерной адсорбции окисью алюминия минеральных примесей навеска пробы должна быть не менее 2 г. Если исследуемое вещество представляет собой концентрат или находится в твердом состоянии, его растворяют в каком-нибудь чистом органическом растворителе и раствор смешивают с окисью алюминия. Для ускорения процесса озоления к смеси добавляют 2 мл концентрированной азотной кислоты [61]. В качестве коллектора применяют также алюмосиликатный катализатор [62]. [c.17]


    Большинство данных о равновесной сокристаллизации относится к захвату легирующих добавок из расплава кристаллами полупроводников и металлов (в основном германием, кремнием, антимонидом индия, алюминием и железом). Много сведений собрано о распределении водорода, кислорода и азота между газовой фазой и кристаллами металлов. Обширный материал накоплен по переходу примесей в осадки солей и оксигидратов из водных растворов в связи с разработкой способов разделения продуктов ядерного распада и созданием методов концентрирования примесей в аналитической химии. Наконец, собрано достаточно много сведений о поведении активаторов при кристаллизации веществ, используемых в качестве люминофоров. [c.181]

    Авторами проводилось отделение борной кислоты от кальция, магния, меди, железа, алюминия на колонке с катионитом КУ-1- Отделение примесей — количественное, метод прост и может быть применен для отделения мешающих титрованию борной кислоты примесей и для концентрирования примесей с целью их определения. [c.29]

    На рис. 33 представлена зависимость процента экстракции комплексов некоторых металлов от pH. Экстракция комплексов с М-бензоилфенилгидроксиламином использована для отделения от алюминия Т1, 2г, V [263, 7761, щелочных и щелочноземельных металлов [703], для концентрирования примесей алюминия и других элементов при определении их в серебре и хроме высокой чистоты [640]. [c.176]

    От гидрата окиси алюминия, образующегося при гидролизе сульфида и окиси алюминия, освобождаются многократной декантацией раствора, сливая воду вместе с взмученной в ней взвесью затем из оставшейся массы отбирают кусочки полученного при реакции бора и промывают их в течение 10—15 мин. разбавленной соляной кислотой. После отделения таким путем поверхностных загрязнений помещают препарат в концентрированную соляную кислоту для растворения примеси алюминия. Растворяются примеси очень медленно, в течение нескольких дней при этом кусочки бора распадаются на отдельные мелкие кристаллики. Их отмывают декантацией, кипятят в соляной кислоте и опять отмывают. Для дальнейшей очистки от примесей бор кипятят в плавиковой кислоте последнюю отмывают на фильтре водой, а затем продукт высушивают в сушильном шкафу. [c.87]

    Глина нагревается с концентрированной соляной кислотой для получения водного раствора хлористого алюминия о примесью хлористых соединений других металлов. При испарении раствора получаются [c.863]

    Б лабораторных условиях применяют установки, в которых используются те или иные варианты концентрирования примесей /2-5/. Нами разработана опытная установка, предназначенная для использования в стендовых условиях, в которой применяет зя предварительное концентрирование примесей на активированной окиси алюминия при низких темпера- [c.30]

    Фосфорная кислота, получаемая в дигидратном процессе,., содержит 22—29% PsOs, 1,5—2% фтора, небольшие кол-ичества соединений серы, кальция, алюминия и кремния, 0,3—0,4% редкоземельных элементов (около 40% от их количества в исходном сырье) и некоторые другие соединения. В кислоте, получаемой из фосфоритов Каратау, помимо указанных примесей присутствуют в значительных количествах (до 4°/о) соли магния. По принятой в настоящее время технологии фтор извлекают из экстракционной фосфорной кислоты на стадии упаривапия, при этом в концентрированной 50—52%-ной кислоте остается 0,3— [c.232]

    Несколько лет назад считали, что концентрирование в 50—100 раз является удовлетворительным. В настоящее время решается задача более эффективного обогащения (в 100 000— 1000 000 000 раз) с выходом определяемого элемента, содержащегося в виде примеси в данном анализируемом объекте. До 95—99%. Например, И. П. Алимарин с сотрудниками, применяя метод распределительной хроматографии с использованием в качестве неподвижной фазы фторопластового порошка и три-бутилфосфата, сконцентрировали следы галлия в присутствии больших количеств алюминия, при этом коэффициент обогащения составил около 10 а выход определяемого элемента (галлия) достиг более 99%. [c.22]

    Описаны методы определения кальция в антимониде алюминия с концентрированием примесей на ионите Дауэкс-50WX8 [606], а также метод анализа окиси алюминия различных модификаций [568]. При анализе чистого металлического бария основу отделяют в виде сульфата. Чувствительность определения кальция составляет 10 —10 % [248]. Описано определение кальция в смеси карбонатов ш,елочноземельных металлов [155]. [c.118]

    В последнее время получил развитие метод отгонки основы в виде летучего галогенида в сочетании с растворением анализируемого металла в неводной среде — галогенированием в среде метанола, четыреххлористого углерода или обработкой галоген-производными углеводородов. Возможность глубокой очистки жидких реагентов и высокая селективность являются положительными сторонами подобных методов концентрирования примесей. Например, при анализе чистого алюминия металл растворяют в бромистом этиле и отгоняют диэтилбромид алюминия при 130° С под вакуумом [1304]. В нелетучем остатке, состоящем из окисла и бромида алюминия, концентрируется большинство примесей, за исключением кремния, галлия и цинка. [c.267]


    Метод концентрирования примесей путем отделения основы в виде А1С1з 6Н2О использовался также [23] для определения в алюминии десяти элементов-примесей. [c.265]

    Дальнейшее повышение чувствительности определений достигается более значительным обогащением. Для этого применяют электрохимическое осаждение примесей из раствора на поверхность менее благородного металла [178], концентрирование примесей [128, 130], экстр агирование примесей из переведенного в окисел алюминия с помощью вакуумного испарителя [107]. [c.120]

    Гексен, гептен52 Гептан, м-октан Концентрирование примесей путем — Окись алюминия, модифици-  [c.380]

    В работе 15] описан химико-спектральный метод определения 22 элементов-примесей в чистом теллуре. Для концентрирования примесей навеску 2 г теллура растворяют в 30 мл 40%-ной азотной кислоты. Затем основную массу металла отделяют в виде теллуровой кислоты. Раствор после отделения осадка выпаривают досуха. Остаток прокаливают, взвешивают, помещают по 50 мг в угольные электроды и подвергают спектральному анализу в дуге переменного тока 12 а. Чувствительность определения 10- — 10 %. Коэффициент вариации для разных элементов колеблется от 15 до 30%. Примером отделения основы в виде хлорида может служить метод концентрирования примесей в алюминии, заклю- [c.170]

    Концентрирование примесей из почвенных экстрактов, растений и других биологических материалов удобно проводить путем осаждения их 8-оксихинолином (оксином). При этом осадителем коллектора следовых количеств является оксинат алюминия или железа [14, 15]. Если следы элементов осаждать комбинированным реагентом 8-оксихинолин — дубильная кислота — тионалид, то число элементов, которые можно концентрировать, приблизительно удваивается, а степень обогащения возрастает до 500— 1000 [14—16]. Следы элементов, указанных в табл. 2.4, можно определить спектральным методом, в котором концентрирование примесей проводят вышеописанным способом, а индий выполняет роль не только коллектора следовых количеств, но и элемента сравнения [17]. Если нужно определить следы элементов в алюминии чистоты 99,99%, то целесообразно применить комбинированный реагент тетраметилендитиокарбамат аммония и тионалид или тиоацетат, а таллий использовать в качестве элемента коллектора следовых количеств [18]. [c.59]

    СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МИКРОКОЛНЧЕСТВ ЭЛЕМЕНТОВ В СОЕДИНЕНИЯХ АЛЮМИНИЯ С ПРЕДВАРИТЕЛЬНЫМ КОНЦЕНТРИРОВАНИЕМ ПРИМЕСЕИ ЭЛЕКТРОЛИЗОМ. [c.235]

    Применение жидкостной хроматографии является одним из перспективных направлений при концентрировании примесей, находящихся в следовых количествах, что объясняется большой селективностью методов жидкостной хроматографии по сравнению с газовой, особенно для высококипящих соединений. В качестве одного из первых примеров можно привести определение в гептане и октане геитена и гексена [169], которые концентрировались на колонке с окисью алюминия, модифицированной нитратом серебра. При применении хроматографа с плотномером метод позволял определять примеси, концентрация которых в исходной пробе составляли 10 — 10 %- Жидкостная хроматография может быть успешно применена для концентрирования примесей сернистых соединений [170], жирных кислот [171 и т. п. [c.365]

    Концентрирование примесей при определении алюминия в красном фосфоре проводилось путем его термического удаления в токе азота при температуре 400=. Остаток после отгонки смывали 10 мл 5 ,-ного раствора едкого натра квалификации Х.Ч., раствор нейтрализовали соляно кислотой особой чистоты, поэтому минимальная величина содержания алюминия в красном фосфоре, при принятом нами способе удаления основного вещества, определяется количеством алю-.миння. внесенным в анализируемый раствор с едким натром. Так как содержание алюминия в едком натре квалификации х.ч. равно 110" /u. TO 10. ил 5%-ной щелочи вносится [c.57]

    Химико-спектральное определение примесей алюминия, железа, кальция, магния, марганца, меди, никеля, олова, свинца, серебра, сурьмы, титана, хрома в двуокиси кремния основано на концентрировании примесей на коллекторе — угольном пЬрошке при разложении испытуемого препарата в парах фтористоводородной кислоты и последующем спектральном анализе концентрата примесей и синтетических эталонов в присутствии хлористого натрия. [c.60]

    От гидроксида алюминия, образующегося ири гидролизе сульфида алюминия, освобождаются многократной декантацией раствора, сливая воду вместе с взмученной в ней известью. Затем из оставшейся смеси отбирают кусочки полученного бора и промывают их в течение 10— 15 мии разбавленной хлороводородной кислотой. После отделения поверхностных загрязнений препарат помещают в концентрированную хлороводородную кислпту д.яя растворения примеси алюмини.ч. Он растворяется мед- [c.170]

    Комплексную очистку сточных вод производства алкилбен--золов можно проводить следующим образом вначале водой извлекают хлорид алюминия, затем полученный водный раствор хлорида алюминия обрабатывают углем при температуре не выше 50 °С или оксидом алюминия с целью удаления ароматических примесей к водному раствору, освобожденному от ароматических углеводородов, добавляют аморфный гидроксид алюминия. Полученный концентрированный водный раствор используют в качестве флокулянта ири очистке сточных вод. [c.264]

    Фирма Мопзап1о отдала предпочтение методу выпаривания водного раствора хлористого алюминия, покидающего промывную систему [7]. При этом происходит концентрирование хлористого алюминия и извлечение соляной иислоты, которая очень полезна при регенерации цеолитов. Еще одно преимущество метода выпаривания заключается в удалении возможных органических примесей цз концентрированного хлористого алюминия. Растущий спрос на водный хлористый алюминий, вместе с тем, что его потребность в процессе Мопзап1о низка, говорит о том, что проблемы с использованием этого побочного продукта не существует. [c.276]

    В концентрированной соляной кислоте алюминий высокой чистоты корродирует межкристаллитно со скоростью, которая зависит от скорости охлаждения алюминия (при получении) от 600 °С, а также от примеси железа. По данным [22], алюминий, содержащий 0,009 % Ре, после охлаждения в печи обладает большей склонностью к межкристаллитной коррозии, чем при закалке в воду. Однако для алюминия, который содержит от [c.350]

    Для осаждения (высаливания) солей из концентрированных растворов часто применяют кислоты, которые имеют одинаковые анионы с анионами солей. Например, нитраты серебра, свинца, цинка и т. д. осаждаются концентрированпой азотной кислотой, хлориды алюминия, цинка, железа — соляной и т. д. Специальные исследования показали, что осаждение кислотами является одним из хороших методов очистки солей. Например, перс-кристаллизация нитрата свинца позволяет снизить содержание примесей (Ре2+, Си +, СгЗ+, Со2+, 2х +, Сс 2+, Ыа+, Р04 -) до Ю- %, а при осаждении нитрата [c.300]

    Очист5и селена от примесей может быть проведена различными методами. Например, можно воспользоваться его хорошей растворимостью в горячем концентрированном растворе NasSOa- Если затем добавить немного раствора Ab(S04)3, то выпадающий осадок гидроокиси (и основных солей) алюминия увлекает с собой примеси К исходному селену. Отфильтровав этот осадок, раствор затем охлаждают, что сопровождается выделением очищенного селена. Очистить последний можно также путем продувания при 450 С струи воздуха сквозь его расплав, с последующей перегонкой остатка в вакууме. [c.355]

    В производстве глинозема методом Байера упаривают под вакуумом алюминатные растворы после декомпозиционного выкручивания (выделения в твердую фазу) гидроксида алюминия А1(0Н)з. Такие растворы содержат 140—150 г/л NajO при каустическом модуле 3,4 (см. рис.. 5.37). Упаренный раствор содержит 250—300 г/л N320. В процессе упаривания не только удаляется избыточная вода, но и выделяются примеси. При концентрировании растворы становятся пересыщенными гидроалюмосиликатом натрия, содой, сульфатом натрия. Процесс осуществляют таким образом, чтобы обеспечить возможно более селективное выделение примесей, так как только при этом удается уменьшить инкрустацию и обеспечить качество осадков, необходимое для последующего их отделения от упаренпого раствора. [c.234]

    Осаждать фторид скандия нецелесообразно из растворов с высокой концентрацией алюминия, так как содержание скандия в образующемся криолите окажется небольшим. Существенную роль в процессе выделения скандия в виде фторида играет кислотность раствора. Выделить скандий достаточно полно из кислых растворов, содержащих большое количество примесей, не удается. К недостаткам фторидного метода относятся также и трудности, связанные с переводом осадка фторида в растворимое состояние, для чего необходима обработка концентрированной серной кислотой при 180—250° либо 20—30%-ным раствором NaOH при 60—80° 2—3 ч. В первом случае в присутствии [c.22]

    Хлоридный метод. В лабораторных масштабах успешно отделить скандий от РЗЭ иттриевой подгруппы и от алюминия удалось, используя разницу в растворимости ЗсСЦ и хлоридов примесей в концентрированной НС1, особенно в водно-спиртовой смеси, насыщенной хлористым водородом [23]. Растворимость некоторых хлоридов в указанных растворах приведена в табл. 5. [c.23]

    Вскрытие серной кислотой (рис. И). Отвальный вольфрамитовый кек обрабатывают 4 ч 98%-ной серкой кислотой (Т Ж = 1 1 ) при 220°, что обеспечивает практически полный переход скандия в воднорастворимое состояние. При выщелачивании водой сульфатизи-рованной массы в раствор вместе со скандием (0,2—0,3 г/л) переходит большая часть железа (15—25 г/л) и марганца (15—20 г/л), а также 2г, Т1, ТЬ, РЗЭ, А1, ЫЬ, Та и другие примеси. Железо и алюминий отделяют карбонатным методом, основанным на способности скандия образовывать комплексные карбонаты с содой и карбонатом аммония, растворимые в избытке соответствующего карбоната. Для этого сернокислые растворы после нейтрализации аммиаком до pH 2, 30— 40-минутного кипячения и отстаивания декантируют. Осадок отмывают горячей водой, объединяют основной и промывной растворы. Перемешивая, вливают объединенный раствор в 20%-ный раствор соды или карбоната аммония равного объема. После двухчасового отстаивания раствор, содержащий скандий, отделяют от осадка, в котором концентрируется большая часть Ре, Мп, Са. Осадок подвергают трехкратной репульпации 10%-ным раствором соды. Из объединенного раствора (основного и промывного) после подкисления соляной кислотой до pH 1 и кипячения (для удаления СОа) осаждают 5с(ОН)з, прибавляя концентрированный раствор аммиака. Прокаливая гидроокись при 850°, получают 40—70%-ную ЗсаОз. Дальнейшую очистку от примеси Т1, 2г, ТЬ и РЗЭ проводят экстракционными методами с применением различных экстрагентов. От А1 и Ве рекомендуется отделять 5с, осаждая его в виде оксалата. Скандий в виде окиси чистотой 99,99% извлекается на 80—88% [17]. [c.37]

    Алюминий и его ставы обладают хорошей коррозионной стойкостью в атмосфере, нейтральных средах за счет амфотерных свойств образующейся пленки гидроксида алюминия. В растворах азотной, фосфорной и серной кислот он имеет достаточно высокую коррозионную стойкость, а в соляной, фтористоводородной, концентрированной серной, муравьиной, щавелевой кислотах растворяется. При закалке алюминия примеси меди и кремния переходят в твердый раствор, что повышает его коррозионную стойкость. Л.тюминий легируют медью (дуралюмин), магнием (магналии), цинком, кремнием и марганцем, главным образом для улучшения механических свойств. [c.18]

    Перегонку с паром, при которой удаляется избыток толуола, можно вести из той же колбы, благодаря чему не происходит потерь, связанных с перенесением смеси из колбы в колбу. По окончании отгонки толуола (примечание 3) смесь тщательно охлаждают, декантируют водный раствор хлористого алюминия и соляной кислоты через воронку Бюхнера и осадок, не извлекая из колбы, промывают небольшим количеством холодной воды. Осадок, остающийся на фильтре, присоединяют к веществу в колбе. Он состоит почти исключительно из л-толуил-о-бензойной кислоты, частично находящейся в кристаллическом состоянии, а частично — в виде маслянистых комков. К этому осадку прибавляют заранее приготовленный нагретый раствор 50 г углекислого натрия в 1 л воды. Для нагревания и перемешивания через смесь пропускают сильную струю острого пара. Приблизительно через 10 мин. кислота переходит в раствор, а в нерастворенном состоянии остается лишь небольшое количество бурых смолистых примесей и немного гидрата окиси алюминия (примечание 4). Еще горячей жидкость фильтруют, фильтрат переносят в 2-литровый стакан и кислоту осаждают прибавлением 65 мл концентрированной соляной кислоты. л-Толуил-о-бензойная кислота выделяется в виде быстро кристаллиз тощегося масла. Жидкость с осадком охлаждают льдом, продукт отсасывают и сушат на воздухе. [c.390]


Смотреть страницы где упоминается термин Алюминий концентрирование примесе: [c.10]    [c.227]    [c.85]    [c.10]    [c.227]    [c.239]    [c.262]    [c.55]    [c.40]    [c.274]   
Методы анализа чистых химических реактивов (1984) -- [ c.56 ]




ПОИСК







© 2025 chem21.info Реклама на сайте